JZOJ 3769. 【NOI2015模拟8.14】A+B

Description

对于每个数字x,我们总可以把它表示成一些斐波拉切数字之和,比如8 = 5 + 3, 而22 = 21 + 1,因此我们可以写成 x = a1 * Fib1 + a2 * Fib2 + a3 * Fib3 + … + an * Fibn, 其中,Fib1 = 1, Fib2 = 2…. Fib[i] = Fib[i – 1] + Fib[I - 2], 且a[n] > 0.那么我们称ai为x的一种斐波拉切表示,由于表示方法有很多种,我们要求最大化a[1…n],即,如果b[1…n]和a[1…m]都可以表示x,若m > n 则a更大,若 m = n, 则从高位到低位比,第一个不同处i,若ai > bi 则a比b大。

你的任务很简单,给你两个用斐波拉切数最大化表示的两个数字,输出他们相加后用斐波那契最大化表示的数字。

Input

两行,分别表示两个数字

每一行开头一个n,表示长度

然后紧接着n个数字,为从低位到高位。

Output

同输入格式。一行。

Sample Input

4 0 1 0 1

5 0 1 0 0 1

Sample Output

6 1 0 1 0 0 1

Data Constraint

对于30%的数据 长度 <= 1000

对于100%的数据 长度 <= 1000000

Solution

  • 在两数相加的时候,其实不需要表示成斐波拉契的形式,因为我们可以通过读入的信息得到答案。

  • 我们把两序列逐位相加,得到一个全新的序列,即为答案。

  • 但这仍不是最优表示,还存在一些 连续的 1 或 一些 2

  • 于是我们将这些“进位”掉,并注意判断特殊情况即可,复杂度是线性的。

  • 注意:本题读入输出文件较大,可以使用C++读入输出优化(不会的戳这里),可大大优化时间。

Code

#include<cstdio>
using namespace std;
int a[1000005];
inline int read()
{
    int X=0,w=1; char ch=0;
    while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
    return X*w;
}
inline void dfs(int x,int y)
{
    while(x<=y && x<=a[0])
    {
        if(a[x])
        {
            if(a[x]>=1 && a[x+1]>=1)
            {
                if(x+2>a[0]) a[0]=x+2;
                a[x+2]++;
                a[x]--,a[x+1]--;
            }
            if(a[x]>=2)
            {
                if(x==a[0]) a[++a[0]]++; else a[x+1]++;
                int z=x-2;
                if(!z) z++; else if(z<0) z=-1;
                if(z>=0) a[z]++;
                a[x]-=2;
                if(a[z]>=2 || z>=0 && a[z+1]>=1) dfs(z,x); else
                    if(z>1 && a[z-1]>=1) dfs(z-1,x);
            }
            if(a[x]>=1 && a[x+1]>=1)
            {
                if(x+2>a[0]) a[0]=x+2;
                a[x+2]++;
                a[x]--,a[x+1]--;
            }
        }
        x++;
    }
}
int main()
{
    a[0]=read();
    for(int i=1;i<=a[0];i++) a[i]=read();
    int k=read();
    for(int i=1;i<=k;i++) a[i]+=read();
    if(k>a[0]) a[0]=k;
    dfs(1,1e9);
    printf("%d",a[0]);
    for(int i=1;i<=a[0];i++)
    {
        putchar(' ');
        if(a[i]) putchar('1'); else putchar('0');
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值