JZOJ 5396. 【NOIP2017提高A组模拟10.6】Blocks

Description

Description

Input

Input

Output

Output

Sample Input

10 5
1 7 9 9 5 9 3 4 5 8
5 7 20 9 1

Sample Output

10 6 0 2 10

Data Constraint

Data Constraint

Solution

  • 主要思路:单调队列× 2 。

  • 因为操作次数不限,因此若一段区间平均值超过 K ,即为一组合法解。

  • Ai 减去 K ,用 sum 记录前缀和,区间变成和 0 即为合法。

  • Fi 表示右端点为 i 的合法区间中最小的左端点。则:

Fi=Min(j)(1ji  sum[i]sum[j1]0)

  • 显然如果存在 k<j 而且 sum[k]<sum[j] ,则 j 为无用决策。

  • 单调栈维护决策即可。

  • 每次计算 Fi 时二分答案。

  • 时间复杂度:O(MNlogN)

  • 想过?

  • 这种复杂度应该 TLE。

  • 事实上,我们并不需要求出所有的 Fi ,而只需要最大的 iFi

  • 显然如果有 i<ksum[i]sum[k] ,那么 iFi 事实上也没有用。

  • 剩下的询问中,sum 具有单调性。

  • 这样就可以使用两个指针完美解决了。

  • 时间复杂度:O(MN)

  • 我当然不会告诉你 sum 要开 longlong

Code

#include<cstdio>
using namespace std;
const int N=1e6+2;
int a[N],q[N];
long long sum[N];
inline int read()
{
    int X=0,w=1; char ch=0;
    while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
    return X*w;
}
int main()
{
    int n=read(),m=read();
    for(int i=1;i<=n;i++) a[i]=read();
    while(m--)
    {
        int k=read(),ans=0;
        for(int i=q[0]=1;i<=n;i++)
        {
            sum[i]=sum[i-1]+a[i]-k;
            if(sum[i]<sum[q[q[0]]]) q[++q[0]]=i;
        }
        for(int i=n;i;i--)
        {
            while(q[0] && sum[q[q[0]]]<=sum[i]) q[0]--;
            if(i-q[q[0]+1]>ans) ans=i-q[q[0]+1];
        }
        printf("%d ",ans);
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liyizhixl/article/details/78167325
文章标签: 单调队列 贪心
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭