Problem Description
Recently, Bob has just learnt a naive sorting algorithm: merge sort. Now, Bob receives a task from Alice.
Alice will give Bob N sorted sequences, and the i-th sequence includes ai elements. Bob need to merge all of these sequences. He can write a program, which can merge no more than k sequences in one time. The cost of a merging operation is the sum of the length of these sequences. Unfortunately, Alice allows this program to use no more than T cost. So Bob wants to know the smallest k to make the program complete in time.
Input
The first line of input contains an integer t0, the number of test cases. t0 test cases follow.
For each test case, the first line consists two integers N (2≤N≤100000) and T (∑Ni=1ai<T<231).
In the next line there are N integers a1,a2,a3,…,aN(∀i,0≤ai≤1000).
Output
For each test cases, output the smallest k.
Sample Input
1
5 25
1 2 3 4 5
Sample Output
3
Solution
-
我们考虑二分答案 k k k 。
-
这就相当于合并石子,但是一次可以选 k k k 个进行合并。
-
也就是 k k k 叉哈夫曼树,用 O ( n ) O(n) O(n) 方法构造即可(多用一个数组往后推)。
-
复杂度 O ( n l o g n ) O(n\ log\ n) O(n log n) 。
Code
#include<cstdio>
#include<algorithm>
#include<cctype>
using namespace std;
const int N=1e5+5;
int n,all;
int a[N],b[N];
inline int read()
{
int X=0,w=0; char ch=0;
while(!isdigit(ch)) w|=ch=='-',ch=getchar();
while(isdigit(ch)) X=(X<<1)+(X<<3)+(ch^48),ch=getchar();
return w?-X:X;
}
inline bool check(int k)
{
long long sum=0;
bool first=true;
int na=0,nb=0,m=0;
int cnt=k;
if((n-1)%(k-1)!=0) cnt=(n-1)%(k-1)+1;
while(n-na+m-nb>1)
{
if(!cnt) cnt=k;
int num=0;
while(cnt--)
{
if(na==n) num+=b[++nb]; else
if(nb==m) num+=a[++na]; else
if(a[na+1]<b[nb+1]) num+=a[++na]; else num+=b[++nb];
}
sum+=b[++m]=num;
cnt=0;
}
return sum<=all;
}
int main()
{
int T=read();
while(T--)
{
n=read(),all=read();
for(int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+1+n);
int l=2,r=n,ans=0;
while(l<=r)
{
int mid=l+r>>1;
if(check(mid))
{
r=mid-1;
ans=mid;
}else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}