Description
JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,
他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文
章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,
那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的
标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6
生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?
Input
输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固
定长度M;以下N行,每一行包含一个使用者了解的单词。这里所有单词及文本的长度不会超过100,并且只可能包
含英文大写字母A..Z
Output
一个整数,表示可能的文章总数。只需要知道结果模10007的值。
开始想的是直接求可行方案.
但是写着写着发现文本的后缀不一定是一个单词.
于是,直接改成求不合法的就行了.
方法很简单,把所有AC自动机上的终止节点,以及这些节点延申出去的节点都打上标记.
直接在没被打上的节点上做一下dp即可.
#include <bits/stdc++.h>
#define N 100000
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
queue<int>q;
int n,m,tot,dp[103][N];
char str[N];
struct Node {
int ch[27],end,f;
}t[N];
void insert() {
int len=strlen(str+1),i,j,rt=0;
for(i=1;i<=len;++i) {
if(!t[rt].ch[str[i]-'A']) t[rt].ch[str[i]-'A']=++tot;
rt=t[rt].ch[str[i]-'A'];
}
t[rt].end=1;
}
void build() {
int i,j;
for(i=0;i<26;++i) if(t[0].ch[i]) q.push(t[0].ch[i]);
while(!q.empty()) {
int u=q.front();q.pop();
for(i=0;i<26;++i) {
int p=t[u].ch[i];
if(!p) {
t[u].ch[i]=t[t[u].f].ch[i];
continue;
}
t[p].f=t[t[u].f].ch[i];
q.push(p);
t[p].end|=t[u].end, t[p].end|=t[t[p].f].end;
}
}
}
int main() {
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i) scanf("%s",str+1),insert();
build();
dp[0][0]=1;
for(int k=0;k<m;++k) {
for(i=0;i<=tot;++i) {
if(t[i].end) continue;
for(j=0;j<26;++j) {
if(!t[t[i].ch[j]].end)
dp[k+1][t[i].ch[j]]=(dp[k+1][t[i].ch[j]]+dp[k][i])%10007;
else dp[k+1][t[i].ch[j]]=0;
}
}
}
int ans=0;
for(i=0;i<=tot;++i) {
if(!t[i].end) {
ans=(ans+dp[m][i])%10007;
}
}
int re=1;
for(i=1;i<=m;++i) re=(long long)(re*26)%10007;
printf("%d\n",(re-ans+10007)%10007);
return 0;
}