BZOJ 1030: [JSOI2007]文本生成器 AC自动机+dp

Description

  JSOI交给队员ZYX一个任务,编制一个称之为“文本生成器”的电脑软件:该软件的使用者是一些低幼人群,
他们现在使用的是GW文本生成器v6版。该软件可以随机生成一些文章―――总是生成一篇长度固定且完全随机的文
章—— 也就是说,生成的文章中每个字节都是完全随机的。如果一篇文章中至少包含使用者们了解的一个单词,
那么我们说这篇文章是可读的(我们称文章a包含单词b,当且仅当单词b是文章a的子串)。但是,即使按照这样的
标准,使用者现在使用的GW文本生成器v6版所生成的文章也是几乎完全不可读的?。ZYX需要指出GW文本生成器 v6
生成的所有文本中可读文本的数量,以便能够成功获得v7更新版。你能帮助他吗?

Input

  输入文件的第一行包含两个正整数,分别是使用者了解的单词总数N (<= 60),GW文本生成器 v6生成的文本固
定长度M;以下N行,每一行包含一个使用者了解的单词。这里所有单词及文本的长度不会超过100,并且只可能包
含英文大写字母A..Z

Output

  一个整数,表示可能的文章总数。只需要知道结果模10007的值。

开始想的是直接求可行方案. 

但是写着写着发现文本的后缀不一定是一个单词. 

于是,直接改成求不合法的就行了. 

方法很简单,把所有AC自动机上的终止节点,以及这些节点延申出去的节点都打上标记. 

直接在没被打上的节点上做一下dp即可.

#include <bits/stdc++.h>  
#define N 100000
#define setIO(s) freopen(s".in","r",stdin) 
using namespace std;   
queue<int>q; 
int n,m,tot,dp[103][N]; 
char str[N];   
struct Node { 
	int ch[27],end,f; 
}t[N]; 
void insert() { 
	int len=strlen(str+1),i,j,rt=0; 
	for(i=1;i<=len;++i) { 
		if(!t[rt].ch[str[i]-'A']) t[rt].ch[str[i]-'A']=++tot;
		rt=t[rt].ch[str[i]-'A'];     
	}   
	t[rt].end=1; 
} 
void build() { 
	int i,j; 
	for(i=0;i<26;++i) if(t[0].ch[i]) q.push(t[0].ch[i]); 
	while(!q.empty()) {
		int u=q.front();q.pop(); 
		for(i=0;i<26;++i) {
			int p=t[u].ch[i]; 
			if(!p) {
				t[u].ch[i]=t[t[u].f].ch[i];  
				continue; 
			} 
			t[p].f=t[t[u].f].ch[i];
			q.push(p); 
			t[p].end|=t[u].end, t[p].end|=t[t[p].f].end;                 
		}
	}   
}
int main() {   
	int i,j; 
	// setIO("input");  
	scanf("%d%d",&n,&m);  
	for(i=1;i<=n;++i)  scanf("%s",str+1),insert();
	build(); 
	dp[0][0]=1;
	for(int k=0;k<m;++k) { 
		for(i=0;i<=tot;++i) {
			if(t[i].end) continue; 
			for(j=0;j<26;++j) { 
				if(!t[t[i].ch[j]].end) 
				    dp[k+1][t[i].ch[j]]=(dp[k+1][t[i].ch[j]]+dp[k][i])%10007;     
				else dp[k+1][t[i].ch[j]]=0;     
			}
		}
	}
	int ans=0;         
	for(i=0;i<=tot;++i) { 
		if(!t[i].end) {
			ans=(ans+dp[m][i])%10007;  
		}
	}   
	int re=1; 
	for(i=1;i<=m;++i) re=(long long)(re*26)%10007; 
	printf("%d\n",(re-ans+10007)%10007);                             
	return 0; 
}

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值