bzoj 3992: [SDOI2015]序列统计 NTT+原根

今天开始学习丧心病狂的多项式qaq......    .

code: 

#include <bits/stdc++.h>  
#define ll long long 
#define setIO(s) freopen(s".in","r",stdin)   
using namespace std;          
int qpow(int x,int y,int mod) 
{
    int res=1;  
    while(y) 
    {
        if(y&1)   res=1ll*res*x%mod;   
        x=1ll*x*x%mod;   
        y>>=1;  
    } 
    return res;   
}   
const int Mod=1004535809,G=3,iG=qpow(G,Mod-2,Mod),MAX_M=300000;      
int fact[10000]; 
int GetRoot(int x) 
{
    int tot=0;   
    int phi=x-1;   
    for(int i=2;i*i<=phi;++i)     if(phi%i==0) { fact[++tot]=i; while(phi%i==0)  phi/=i;  }     
    if(phi>1)   fact[++tot]=phi;    
    phi=x-1;   
    for(int i=2;i<=phi;++i) 
    {
        bool flag=1;  
        for(int j=1;j<=tot&&flag;++j) 
            if(qpow(i,phi/fact[j],x)==1)   flag=0;   
        if(flag)  return i;  
    } 
    return -1;   
}
int limit,rev[MAX_M];    
void NTT(int *p,int op) 
{
    for(int i=0;i<limit;++i)  if(i<rev[i])   swap(p[i],p[rev[i]]);   
    for(int i=1;i<limit;i<<=1)   
    {
        int rot=qpow(op==1?G:iG,(Mod-1)/(i<<1),Mod);   
        for(int j=0;j<limit;j+=(i<<1))   
        {
            int w=1;            
            for(int k=0;k<i;++k,w=1ll*w*rot%Mod)  
            {
                int x=p[j+k],y=1ll*w*p[i+k+j]%Mod;   
                p[j+k]=(x+y)%Mod,  p[i+j+k]=(x-y+Mod)%Mod;   
            }
        }
    }  
    if(op==-1)    
    {
        int inv=qpow(limit,Mod-2,Mod);   
        for(int i=0;i<limit;++i)    p[i]=1ll*p[i]*inv%Mod;   
    }
}
map<int,int>mp;   
int N,M,S,X,F[MAX_M],H[MAX_M];   
void mul(int *A,int *B,int *C) 
{
    static int res[MAX_M],a[MAX_M],b[MAX_M];   
    for(int i=0;i<limit;++i)  a[i]=A[i],b[i]=B[i];              
    NTT(a,1), NTT(b,1);   
    for(int i=0;i<limit;++i)   a[i]=1ll*a[i]*b[i]%Mod;   
    NTT(a,-1);   
    for(int i=0;i<M-1;++i)    res[i]=(a[i]+a[i+M-1])%Mod;   
    for(int i=0;i<M-1;++i)    C[i]=res[i];   
}
int main() 
{ 
    // setIO("input");   
    scanf("%d%d%d%d",&N,&M,&X,&S);   
    int g=GetRoot(M); 
    for(int i=0;i<M-1;++i)   mp[qpow(g,i,M)]=i;   
    for(int i=1,x;i<=S;++i) 
    { 
        scanf("%d",&x);  
        x%=M;  
        if(x)   F[mp[x%M]]++;   
    } 
    H[mp[1]]=1;  
    int p=0; 
    for(limit=1;limit<=2*M;limit<<=1,++p);  
    for(int i=0;i<limit;++i)   rev[i]=(rev[i>>1]>>1)|((i&1)<<(p-1));       
    while(N) 
    {
        if(N&1)    mul(H,F,H);  
        mul(F,F,F); 
        N>>=1; 
    } 
    printf("%d\n",H[mp[X]]);   
    return 0; 
}

  

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值