BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

本文详细介绍了线性筛法求解莫比乌斯函数的方法,并通过一道竞赛题目展示了如何运用莫比乌斯反演解决实际问题。代码中实现了线性筛法求解莫比乌斯函数及其前缀和,以及使用快速幂和递归调用的方式进行计算。

简单推一波公式即可,我这种菜逼都能推出来,一看就水题

Code:

#include<bits/stdc++.h>
#define maxn 1040000 
#define M 1000001 
#define inf 0x7f7f7f7f
#define ll long long 
using namespace std;
ll mod = 1000000007; 
void setIO(string s)
{
	string in=s+".in"; 
	freopen(in.c_str(),"r",stdin); 
}
map<int,ll>ansmu;   
int cnt; 
bool vis[maxn]; 
int prime[maxn], mu[maxn]; 
ll sumv[maxn]; 
ll qpow(ll base,ll k)
{
	ll tmp=1; 
	while(k)
	{
		if(k&1) tmp=tmp*base%mod; 
		base=base*base%mod; 
		k>>=1; 
	}
	return tmp; 
}
void Linear_shaker()
{
	mu[1]=1; 
	int i,j;
	for(i=2;i<=M;++i)
	{
		if(!vis[i]) prime[++cnt]=i, mu[i]=-1; 
		for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j) 
		{
			vis[i*prime[j]]=1; 
			if(i%prime[j]==0) 
			{
				mu[i*prime[j]]=0; 
				break; 
			}
			mu[i*prime[j]]=-mu[i]; 
		}
	}
	for(i=1;i<=M;++i) sumv[i]=(sumv[i-1]+mu[i]+mod)%mod; 
}
ll get(ll n)
{
	if(n<=M) return sumv[n]; 
	if(ansmu[n]) return ansmu[n]; 
	ll i,j,re=0; 
	for(i=2;i<=n;i=j+1)
	{
		j=(n/(n/i)); 
		re=(re+(j-i+1)%mod*get(n/i)%mod+mod)%mod;    
	}
	return ansmu[n]=(1ll-re+mod)%mod; 
}
int main()
{
	// setIO("input"); 
	ll n,k,L,R,i,j,re=0; 
	scanf("%lld%lld%lld%lld",&n,&k,&L,&R); 
	L = (L - 1) / k, R = R / k;    
	Linear_shaker();    
	for(i=1;i<=R;i=j+1)
	{
		j=min(R/(R/i), L/i?L/(L/i):inf); 
		re=(re+qpow(R/i-L/i, n) * (get(j)-get(i-1)+mod)%mod)%mod;      
	}
	printf("%lld\n",re); 
	return 0; 
}

  

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值