动手学数据分析—建模评估

1. 动手学数据分析—建模评估

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

载入清洗之后的数据(clear_data.csv),原始数据载入(train.csv)

df_data=pd.read_csv('clear_data.csv')
df_data.head()
df_train=pd.read_csv('train.csv')
df_train.head()

sklearn的算法选择路径

# sklearn模型算法选择路径图
Image('sklearn.png')

切割训练集和测试集

from sklearn.model_selection import train_test_split
# 开始构建(训练)
# 将数据集划分为训练集和测试集
# 准备训练样本对(样本输入、样本输出)
X_train, X_test, y_train, y_test = train_test_split(
                                                    df_data, 
                                                    df_train['Survived'], 
                                                    train_size = 0.75, 
                                                    random_state = 1234)
print('训练数据集共有%d条观测' %X_train.shape[0])
print('测试数据集共有%d条观测' %X_test.shape[0])
# 训练数据集共有668条观测
# 测试数据集共有223条观测

1.1 模型创建

1.1.1 默认参数逻辑回归模型

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 模型得分
print('模型在训练集上的准确率%f' %lr.score(X_train,y_train))
print('模型在测试集上的准确率%f' %lr.score(X_test,y_test))
# 模型在训练集上的准确率0.796407
# 模型在测试集上的准确率0.798206

调参

# 调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
# 模型得分
print('模型在训练集上的准确率%f' %lr2.score(X_train,y_train))
print('模型在测试集上的准确率%f' %lr2.score(X_test,y_test))
# 模型在训练集上的准确率0.793413
# 模型在测试集上的准确率0.798206

1.1.2 默认参数的随机森林分类模型

rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print('模型在训练集上的准确率%f' %rfc.score(X_train,y_train))
print('模型在测试集上的准确率%f' %rfc.score(X_test,y_test))
# 模型在训练集上的准确率1.000000
# 模型在测试集上的准确率0.816143
# 调整参数后的随机森林分类模型
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
print('模型在训练集上的准确率%f' %rfc2.score(X_train,y_train))
print('模型在测试集上的准确率%f' %rfc2.score(X_test,y_test))
# 模型在训练集上的准确率0.869760
# 模型在测试集上的准确率0.829596

1.2 输出模型预测结果

# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]
# array([[0.82540284, 0.17459716],
#        [0.89141734, 0.10858266],
#        [0.87791075, 0.12208925],
#        [0.89255417, 0.10744583],
#        [0.36763188, 0.63236812],
#        [0.68527701, 0.31472299],
#        [0.84425891, 0.15574109],
#        [0.77026672, 0.22973328],
#        [0.89188541, 0.10811459],
#        [0.79849051, 0.20150949]])

2. 模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均

2.1 交叉验证

Image('Snipaste_2020-01-05_16-37-56.png')

在这里插入图片描述

from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
# k折交叉验证分数
scores  # array([0.85074627, 0.74626866, 0.74626866, 0.80597015, 0.88059701,0.8358209 , 0.76119403, 0.8358209 , 0.74242424, 0.75757576])
# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))
# Average cross-validation score: 0.80

2.2 混淆矩阵

Image('Snipaste_2020-01-05_16-38-26.png')

在这里插入图片描述

Image('Snipaste_2020-01-05_16-39-27.png')

在这里插入图片描述

from sklearn.metrics import confusion_matrix
# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
# 模型预测结果
pred = lr.predict(X_train)
# 混淆矩阵
confusion_matrix(y_train, pred)  # array([[354,  58],[ 83, 173]])

from sklearn.metrics import classification_report
# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))
#                 precision    recall  f1-score   support

#            0       0.81      0.86      0.83       412
#            1       0.75      0.68      0.71       256

#     accuracy                           0.79       668
#    macro avg       0.78      0.77      0.77       668
# weighted avg       0.79      0.79      0.79       668

2.3 ROC曲线

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值