深度学习之路---从历史认识深度学习

本文回顾了深度学习的发展历程,从1986年Geoffrey Hinton发明BP算法解决非线性问题,导致神经网络的第二次热潮,到后续的低谷期,解释了机器学习和神经网络的概念。近年来,随着深度学习的兴起,神经网络重新成为机器学习领域的焦点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习任一门知识都应该先从其历史开始,把握了历史,也就抓住了现在与未来 ———by BryantLJ
学习深度学习也需要了解深度学习的经历过程,能够更好的帮助我们理解深度学习的变更和趋势。

深度学习经过3次浪潮,起起伏伏,目前处于第三次浪潮中,也是风口上的猪。其历史时间轴偷图如下:
                
那么是什么原因让深度学习起起落落呢?
我们将通过几个关键节点给出答案,同时认识深度学习的变更和历史趋势。

第一次兴起--神经网络启蒙

1943年 由神经科学家麦卡洛克(W.S.McCilloch) 和数学家皮兹(W.Pitts)在《数学生物物理学公告》上发表论文《神经活动中内在思想的逻辑演算》(A Logical Calculus of the Ideas Immanent in Nervous Activity)。建立了神经网络和数学模型,称为MCP模型。所谓MCP模型,其实是按照生物神经元的结构和工作原理构造出来的一个抽象和简化了的模型,也就诞生了所谓的“模拟大脑”,人工神经网络的大门由此开启。MCP当时是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元简化为了三个过程:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示
该模型建立了深度学习的基本思想,在后面的课程中我们将不断遇到。

1958年 计算机科学家罗森布拉特( Rosenblatt)提出了两层神经元组成的神经网络,称之为“感知器”(Perceptrons)。第一次将MCP用于机器学习(machine learning)分类(classification)。“感知器”算法算法使用MCP模型对输入的多维数据进行二分类,且能够使用梯度下降法从训练样本中自动学习更新权值。1962年,该方法被证明为能够收敛,理论与实践效果引起第一次神经网络的浪潮。

第一次低谷---成也萧何败也萧何

1969年,美国数学家及人工智能先驱 Marvin Minsky 在其著作中证明了感知器本质上是一种线性模型(linear model),只能处理线性分类问题,就连最简单的XOR(亦或)问题都无法正确分类。这等于直接宣判了感知器的死刑,神经网络的研究也陷入了将近20年的停滞。
第二次兴起--BP网络与激活函数

1986年由神经网络之父 Geoffrey Hinton 在1986年发明了适用于多层感知器(MLP)的BP(Backpropagation)算法,并采用Sigmoid进行非线性映射,有效解决了非线性分类和学习的问题。该方法引起了神经网络的第二次热潮。注:Sigmoid 函数是一个在生物学中常见的S型的函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的阈值函数,将变量映射到0,1之间。

S(x)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值