Go Web编程实战(10)----模板引擎库text/template包的使用 在Go语言中,模板引擎库text/template包主要用于处理任意格式的文本内容,同时还提供了html/template包,用于生成可对抗代码注入的安全HTML文档。模板可以被理解为实现定义好的HTML文档。模板渲染可以被简单理解为文本替换操作。使用相应的数据去替换HTML文档中事先准备好的标记内容。根据MVC模型,模板的诞生是为了将显示与数据分离,即前后端分离。
Go Web编程实战(9)----创建客户端 在Go语言的net/http包中,还提供了一个被称为Client的结构体。该结构体提供了Get()、Post()两个请求函数。下面,我们来分别使用代码实现这些请求。
Python:运营自媒体,如何修改图片的MD5值 在我们运营自媒体的时候,或多或少会用到别人的图片。但是某些自媒体平台会判断图片的MD5,如果MD5相同,会认为你抄袭,默认会降低你的权重,导致流量很低。所以,如何修改图片的MD5值,往往成为了运营自媒体关键技术之一。当然,有的人肯定会说,通过PS换个格式保存一下图片自然就改变了MD5。
Go Web编程实战(8)----创建HTTP与HTTPS服务器端 其实Go语言创建一个简单的HTTP服务器程序,与Java Web的servlet差不多。比如,我们这里创建一个简单打印“Hello World”的程序。代码如下:
Go Web编程实战(7)----并发goroutine 在程序的开发中,先将go关键字声明放到一个需要调用的函数之前,然后在相同地址空间调用运行这个函数,这样该函数执行时,便会作为一个独立的并发线程。这种线程在Go语言中被称为goroutine。
Go Web编程实战(6)----反射 与其他语言一样,Go语言的反射同样是指,计算机程序在运行时,可以访问、检测和修改它本身状态或行为的一种能力。其在reflect包里,定义了一个接口和一个结构体,即reflect.Type接口与reflect.Value结构体,它们提供了很多函数来获取存储在接口里的类型信息
Go Web编程实战(4)----函数 当程序出现宕机或者遇到panic错误时,recover()函数可以恢复执行,而且不会报告宕机错误。之前说过,defer不但可以在return返回前调用,也可以在程序宕机显示panic错误时,在程序出现宕机之前被执行,依次来恢复程序。
Go Web编程实战(2)----流程控制语句 目录流程控制语句if-else语句for循环语句用for循环实现do-while用for循环实现whilebreak指定跳出循环continue语句for-range循环遍历数组遍历字符串遍历map遍历通道(channel)switch-case语句一个分支多个值分支表达式goto语句流程控制语句每个语言都会介绍到流程控制语句,Go语言同样具有这些。比如分支结构if-else、for循环、for-range循环、switch-case语句、goto语句、break语句以及continue语句。下面,博主
Go Web编程实战(1)----Go语言的基础语法 很高兴能够一起和大家学习Go语言,对于它的场景其实很多,包括云计算、容器虚拟化、分布式存储、网络爬虫、运维开发、Web开发、服务端开发、区块链、IoT等领域都有所应用。
华为鸿蒙手表实现除夕夜烟花燃放效果 除夕夜烟花燃放效果目录前言image-animator组件实现表盘烟花绽放前言经过一年多的普及与应用,鸿蒙系统早已经涉及华为的各个终端设备,比如手机、音箱、手表等等。正好博主拿到了华为WATCH GT Runner,那就用它来写鸿蒙手表开发的知识。image-animator组件因为是第一篇博文讲解,为了让大家对鸿蒙手表App开发更感兴趣,我们不单独讲解任何组件。这里,我们通过除夕夜华为手表表盘绽放烟花效果,来让大家更有开发兴趣。首先,在手表表盘绽放烟花,肯定是一个动态过程,可以用video组件
《Flutter开发从入门到实战》:为什么要学Flutter? 目录为什么要学习Flutter?《Flutter开发从入门到实战》有哪些优点混合开发偏向移动开发国际化零基础也可读二维码展示动图实战所学知识在早期的前端开发中,我们一般都需要准备2套代码分别运行在Android与iOS平台,这种耗时耗力不便于维护的重复劳动,不仅浪费公司的人力资源,同时也存在多端体验不一致的问题。为什么要学习Flutter?为此,大前端概念应运而生。相信现在“大前端”这个名词,对于前端开发者已经家喻户晓。其实大前端的主要核心就是跨平台技术,它能通过一套代码,运行多个平台。而目前
Python数据结构与算法(20)---插值查找 目录插值查找插值查找公式计算实战:插值查找插值查找插值查找,又名Interpolation Search,是基于有序数列的元素查找,在采用二分查找算法的思想上进行了改进。其在最小值与最大值范围内,用公式确定中间分割比较点mid。这里,我们具体的插值公式如下所示:其时间复杂度为:O(loglogN)。插值查找公式计算假设,我们的数列还是[1,3,5,7,9,11,13],我们还是需要查找数值13。那么,根据上面的公式(left=0,right=6),我们计算得出mid=(13-1)*6/(13-
Python数据结构与算法(19)---二分查找 目录二分查找图解二分查找实战:二分查找二分查找二分查找又名Binary Search,其采用折半的查找方式,实现对有序元素的快速查找。相信看到上面二分查找的定义,读者很容易就能想到,二分查找有一个非常重要的前提条件,那就是其需要已经排序好的数列。这样,我们折半查找可以缩小查找的次数,更加的高效。其具体原理:在数列中取中间下标值mid的元素e,进行查找元素key的比较。如果相等即查找成功,如果不等,大于就只需要在后半部分查找,小于需要在前半部分查找。不管是前半部分还是后半部分,我们在取其中间值mid
Python数据结构与算法(18)---检索算法 目录检索算法线性查找图解线性查找实战:线性查找检索算法数据结构的排序算法,到17篇归并排序就彻底讲解完成。从今天开始,我们将进入全新的数据结构知识,它的名字叫查找算法,也叫检索算法。检索算法又分为排序检索与非排序检索。排序检索顾名思义就是先排序在进行查找,在数据库的查找中,我们往往都是这么做的。当然非排序检索也存在,只不过效率非常低。检索算法包括线性查找、二分查找、插值查找、斐波拉契查找、分块查找、哈希查找以及回溯查找7个算法。所以,从18到24篇都是检索算法的内容知识。下面,我们来介绍今天第1个
Python数据结构与算法(17)---归并排序 目录归并排序图解归并排序实战:归并排序归并排序归并排序,又名Merge Sort,是建立在归并操作上的一种有效的排序算法。其具体原理有2个关键字:分与治。分:我们需要进行分的操作,将数列均衡的分成2部分(n//2),当然如果是奇数,可以自己决定将多余的数分到前半部分,还是后半部分。当分成2部分之后,在递归的对左右子序列继续2分,以此类推,直到只有1个元素,再也分不下去。治:所有元素分完之后,开始大小比较归并操作,从2个元素开始进行归并的比较,直到归并到n//2为止。其时间复杂度为:O(n log