Scharr与Laplacian滤波器---OpenCV-Python开发指南(21)

本文介绍了OpenCV-Python中的Scharr滤波器和Laplacian滤波器。Scharr滤波器作为Sobel滤波器的改良版,具有更高的精度。Laplacian滤波器是一种二阶导数算子,用于图像边缘锐化。通过实例展示了两种滤波器在X、Y方向上的应用及效果。

Scharr滤波器

OpenCV还给我们提供了Scharr滤波器,该滤波器与Sobel滤波器具有同样的处理速度,且精度更高。可以把它看出Sobel滤波器的改良版本,其核通常为:

1
在OpenCV中,它提供函数cv2.Scharr()来计算Scharr滤波器,其完整定义如下:

def Scharr(src, ddepth, dx, dy, dst=None, scale=None, delta=None, borderType=None):

参数与Sobel滤波器一摸一样,不懂的可以会看上一篇,这里不在赘述。同样的,其计算的梯度(导数)也与Sobel滤波器一摸一样,有X方向的,Y方向的,XY叠加的。(需要特别注意,Scharr滤波器没有XY方向的,只有叠加的,如果设置dx,dy都等于1会报错)

这里我们同样来实现这3种效果,并进行对比,首先是X方向的:

import cv2

img = cv2.imread("4.jpg", cv2.IMREAD_UNCHANGED)
sobel_x=cv2.Scharr(img,cv2.CV_64F,1,0)
result=cv2.convertScaleAbs(sobel_x)
cv2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李元静

您的鼓励就是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值