Scharr滤波器
OpenCV还给我们提供了Scharr滤波器,该滤波器与Sobel滤波器具有同样的处理速度,且精度更高。可以把它看出Sobel滤波器的改良版本,其核通常为:

在OpenCV中,它提供函数cv2.Scharr()来计算Scharr滤波器,其完整定义如下:
def Scharr(src, ddepth, dx, dy, dst=None, scale=None, delta=None, borderType=None):
参数与Sobel滤波器一摸一样,不懂的可以会看上一篇,这里不在赘述。同样的,其计算的梯度(导数)也与Sobel滤波器一摸一样,有X方向的,Y方向的,XY叠加的。(需要特别注意,Scharr滤波器没有XY方向的,只有叠加的,如果设置dx,dy都等于1会报错)
这里我们同样来实现这3种效果,并进行对比,首先是X方向的:
import cv2
img = cv2.imread("4.jpg", cv2.IMREAD_UNCHANGED)
sobel_x=cv2.Scharr(img,cv2.CV_64F,1,0)
result=cv2.convertScaleAbs(sobel_x)
cv2

本文介绍了OpenCV-Python中的Scharr滤波器和Laplacian滤波器。Scharr滤波器作为Sobel滤波器的改良版,具有更高的精度。Laplacian滤波器是一种二阶导数算子,用于图像边缘锐化。通过实例展示了两种滤波器在X、Y方向上的应用及效果。
最低0.47元/天 解锁文章
2858

被折叠的 条评论
为什么被折叠?



