数据结构(十四)最短路问题

最短路径问题

1. 概述

1. 抽象

在网络(带权图)中,求两个不同顶点之间的所有路径中,边的权值之和最小的那一条路径

  • 这条路径就是两点之间的最短路径(ShorttestPath)
  • 第一个顶点为源点(Source)
  • 最后一个顶点为终点(Destination)
2. 分类
  • 单源最短路径问题:从某固定源点出发,求其到所有其他顶点的最短路径
    • (有向)无权图
    • (有向)有权图
  • 多源最短路径问题:求任意两顶点间的最短路径

2. 无权图的单源最短路算法

按照递增(非递减)的顺序找出到各个顶点的最短路

void Unweighted( Vertex s){
   
   
    queue<Vertex> q;
    q.push(s);
    wile(!q.empty()){
   
   
        v = q.front(); q.pop();
        for( V 的每个临界点 W){
   
   
            dist[W] = dist[v] + 1; // 当前距离上一距离 + 1
            path[W] = v;  // s 到 w 的必经顶点就是前一个顶点 v
            q.push(W);
        }
    }
}

3. 有权图的单源最短路算法

Dijkstra 算法
  • 令 S = {源点s + 已经确定了最短路径的顶点 vi_ii}
  • 对任一未收录的顶点 v,定义 dist[v] 为 s 到 v 的最短路径长度,但该路径仅经过 S 中的顶点。即路径 {s→(vi_ii∈S)→v} 的最小长度
  • 若路径是按照递增(非递减)的顺序生成的,则
    • 真正的最短路必须只经过 S 中的顶点
    • 每次从未收录的顶点中选一个 dist 最小的收录
    • 增加一个 v 进入 S,可能影响另外一个 w 的 dist 值
      • dist[w] = min{dist[w],dist[v] + <v,w>的权重}
void Dijkstra( Vertex s ){
   
   
    while(1){
   
   
        V = 未收录顶点中dist最小值;
        if( 这样的V不存在 )
            break;
        collected[V] = true;
        for( V 的每个邻接点 W )
            if( collected[W] == false )
                if(dist[V] + E<V,W> < dist[W]){
   
   
             		dist[W] = dist[V] + E<V,W>;
                    path[W] = V;
                }
    }
}

取出未收录顶点中dist最小值 和 更新dist[W]的操作可以考虑两种方法:

  1. 直接扫描所有未收录顶点 ——O(|V|)

    T = O(|V|2^22 + |E|) ——稠密图效果更好

  2. 将dist存在最小堆中 ——O(log|V|)

    更新dist[w]的值 —O(log|V|)

    T = O(|E|log|V|) —— 稀疏图效果更好

#include<iostream>
#include<stdlib.h>
#define Inf 1000000
#define Init -1
#define MaxVertex 100
typedef int Vertex;
int G[MaxVertex][MaxVertex];
int dist[MaxVertex];  // 距离 
int path[MaxVertex];  // 路径 
int collected[MaxVertex];  // 被收录集合 
int Nv;   // 顶点 
int Ne;   // 边 
using namespace std;

// 初始化图信息 
void build(){
   
   
	Vertex v1,v2;
	int w;
	cin>>Nv
评论 6
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值