有一根长度为 n
个单位的木棍,棍上从 0
到 n
标记了若干位置。例如,长度为 6 的棍子可以标记如下:
给你一个整数数组 cuts
,其中 cuts[i]
表示你需要将棍子切开的位置。
你可以按顺序完成切割,也可以根据需要更改切割的顺序。
每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。
返回切棍子的 最小总成本 。
示例 1:
输入:n = 7, cuts = [1,3,4,5] 输出:16 解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:
第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。 而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。
示例 2:
输入:n = 9, cuts = [5,6,1,4,2] 输出:22 解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。
提示:
2 <= n <= 10^6
1 <= cuts.length <= min(n - 1, 100)
1 <= cuts[i] <= n - 1
cuts
数组中的所有整数都 互不相同
解法
我们可以使用动态规划来解决这个问题。具体来说,我们可以定义一个二维数组
dp
,其中dp[i][j]
表示从位置i
到位置j
的最小切割成本。步骤详解
初始化:
- 将
cuts
数组扩展,包含棍子的起点0
和终点n
。- 对
cuts
数组进行排序,以便于后续处理。动态规划状态定义:
dp[i][j]
表示从位置cuts[i]
到位置cuts[j]
的最小切割成本。状态转移方程:
- 对于每个区间
[cuts[i], cuts[j]]
,我们需要考虑所有的切割点k
,其中i < k < j
。- 如果我们在
cuts[k]
处进行切割,那么切割成本为cuts[j] - cuts[i]
,加上左右两个子区间的最小成本dp[i][k] + dp[k][j]
。- 因此,状态转移方程为:
dp[i][j]=mini<k<j((cuts[j]−cuts[i])+dp[i][k]+dp[k][j])dp[i][j]=i<k<jmin((cuts[j]−cuts[i])+dp[i][k]+dp[k][j])
边界条件:
- 当
i == j
时,没有切割点,成本为0
。最终结果:
dp[0][m-1]
即为从起点到终点的最小切割成本,其中m
是扩展后的cuts
数组的长度。
代码实现
function minCost(n, cuts) {
// 扩展 cuts 数组,包含起点和终点
cuts.push(0);
cuts.push(n);
// 对 cuts 数组进行排序
cuts.sort((a, b) => a - b);
const m = cuts.length;
const dp = Array.from({ length: m }, () => Array(m).fill(0));
// 动态规划计算最小成本
for (let len = 2; len < m; len++) {
for (let i = 0; i + len < m; i++) {
const j = i + len;
dp[i][j] = Infinity;
for (let k = i + 1; k < j; k++) {
dp[i][j] = Math.min(dp[i][j], cuts[j] - cuts[i] + dp[i][k] + dp[k][j]);
}
}
}
return dp[0][m - 1];
}
// 测试用例
console.log(minCost(7, [1, 3, 4, 5])); // 输出: 16
console.log(minCost(9, [5, 6, 1, 4, 2])); // 输出: 22
解释
初始化:
cuts
数组扩展为[0, 1, 3, 4, 5, 7]
。- 对
cuts
数组进行排序。动态规划:
- 使用二维数组
dp
存储每个区间的最小切割成本。- 通过三层循环计算每个区间的最小成本:
- 外层循环控制区间长度
len
。- 中层循环控制区间的起点
i
。- 内层循环控制切割点
k
。结果:
dp[0][m-1]
即为从起点到终点的最小切割成本。这个算法的时间复杂度是 O(m3)O(m3),其中 mm 是扩展后的
cuts
数组的长度。空间复杂度是 O(m2)O(m2)。这种方法能够在合理的时间内解决给定的问题。