
image caption
文章平均质量分 68
都是学习image caption中写的博客
zhaoliwen是猪啊
这个作者很懒,什么都没留下…
展开
-
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》阅读笔记
《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》阅读笔记《Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering》是一篇关于image caption方向的论文,收录在2018CVPR中,最近在阅读这篇论文,因此做一篇关于该论文的笔记,有不对的地方大家可以在评论区进行探讨探讨原创 2021-04-15 17:09:32 · 322 阅读 · 0 评论 -
image caption 方法综述(四)
image caption领域方法综述(四)image caption领域自从引入了深度学习以后发展十分迅速,通过2015年到2020年发表的论文,我将image caption领域的方法分为4类:基于注意力机制、基于对抗生产网络、基于强化学习以及基于密集描述,本篇参考了论文 图像描述技术综述[J]. 计算机科学, 2020, 47(12): 149-160.,这一篇介绍第四部分:基于密集描述。四、基于密集描述基于密集描述的图像描述方法就是将图像描述分解为多个图像区域描述,当描述一个物体时,可以看作目原创 2021-04-13 09:43:02 · 1298 阅读 · 0 评论 -
image caption 方法综述(三)
image caption领域方法综述(三)image caption领域自从引入了深度学习以后发展十分迅速,通过2015年到2020年发表的论文,我将image caption领域的方法分为4类:基于注意力机制、基于对抗生产网络、基于强化学习以及基于密集描述,本篇参考了论文 图像描述技术综述[J]. 计算机科学, 2020, 47(12): 149-160.,这一篇介绍第一部分:基于强化学习的方法。三、基于强化学习强化学习也是机器学习领域中重要的方法之一,也称为鼓励学习、增强学习。在强化学习中,智能原创 2021-03-30 15:01:51 · 1658 阅读 · 0 评论 -
image caption 方法综述(二)
image caption领域方法综述(二)image caption领域自从引入了深度学习以后发展十分迅速,通过2015年到2020年发表的论文,我将image caption领域的方法分为4类:基于注意力机制、基于对抗生产网络、基于强化学习以及基于密集描述,本篇参考了论文 图像描述技术综述[J]. 计算机科学, 2020, 47(12): 149-160.,这一篇介绍第一部分:基于对抗生产网络的方法。二、基于对抗生产网络GAN生成对抗网络是一种无监督的深度学习模型,近年来被广泛应用于人工智能领域,原创 2021-03-23 19:35:31 · 1544 阅读 · 0 评论 -
image caption 方法综述(一)
image caption领域方法综述(一)image caption领域自从引入了深度学习以后发展十分迅速,通过2015年到2020年发表的论文,我将image caption领域的方法分为4类:基于注意力机制、基于对抗生产网络、基于强化学习以及基于密集描述,本篇参考了论文 图像描述技术综述[J]. 计算机科学, 2020, 47(12): 149-160.,这一篇介绍第一部分:基于注意力机制的方法。一、基于注意力机制1、《Show, attend and tell: Neural image ca原创 2021-03-23 19:33:06 · 3483 阅读 · 1 评论 -
Overleaf / Latex 中并排插入两张图片
Overleaf / Latex 中并排插入两张图片最近在用overleaf写论文,遇到了需要并排插入两张图片的情况,在网上查了好久终于成功了,记录一下。首先要上传你要插入的两个图片,点这个upload按钮,我上传了111.png和222.png两张图片:之后需要在导言区,也就是文章最开头输入下面三行代码:\usepackage{graphicx}\usepackage{float}\usepackage{subfigure}现在就可以用插入图片的代码了:\begin{figure}[t]原创 2021-03-11 13:17:34 · 53203 阅读 · 8 评论 -
image caption领域现存问题
image caption领域现存问题写一个博客记录下我认为的在 image caption 领域目前存在的可以去研究的问题,持续更新,欢迎同样研究image caption领域的小伙伴一起探讨,也欢迎补充。1、生成的caption会出现错误,最常见的有不能将图像内容完全描述,会出现漏掉图像某个重要object的情况。2、产生的caption描述风格过于单一,会与训练集数据的描述风格类似。3、对object的描述不够详尽。4、时间问题。训练时间以及生成caption的时间过慢。...原创 2021-03-08 20:46:43 · 710 阅读 · 4 评论 -
查看显卡型号
如何得知自己电脑显卡的型号今天拿到实验室的服务器,需要配置GPU环境,第一步就需要知道自己电脑的GPU型号,于是输入了查询GPU信息的指令nvidia-smi于是输出了显卡信息但是很不幸,在GPU型号部分只显示了一部分(GeForce RTX 208…),于是我需要找找办法搞清楚省略号代表了什么,于是继续进行下面步骤:1、输入显示先看型号的信息的指令:lspci | grep -i vga可以得到显卡型号的16进制码可以看到我的显卡的16进制是1e042、登录网站:使用16进制码查原创 2020-12-21 19:35:41 · 9852 阅读 · 1 评论 -
《Unsupervised Image Captioning》 阅读笔记
Unsupervised Image Captioning 阅读笔记《Unsupervised Image Captioning》是一篇关于image caption方向的论文,收录在2019CVPR中,最近在阅读这篇论文,因此做一篇关于该论文的笔记,有不对的地方大家可以在评论区进行探讨探讨。Abstarct目前大多数的image caption的模型都严重地依赖成对的图片—语句数据集,但获得他们代价较高,因此在本篇论文中,作者第一次尝试了无监督模型。该模型需要一个图像集、一个语料库和一个视觉检测器。原创 2020-08-24 19:17:08 · 556 阅读 · 3 评论 -
Selective Search 代码分析(大量注释)
Selective Search 代码分析(大量注释)什么是selective searchselective search是目标检测中基于区域(region proposal)的方法的一种,他的作用是定位目标的具体位置,主要是将原图像分成许多子块,而这些子块会用于目标识别模型。总而言之,他的输入是一幅图像,而输出是图像中目标的具体位置。该算法后来被应用到了R-CNN,SPP-Net,Fast R-CNN等算法中。因此我对该算法的代码进行研究并做了大量的注释,希望可以帮助大家看懂他的源码。selec原创 2020-08-19 21:15:10 · 1094 阅读 · 0 评论