RQNOJ 169
题面
题目描述
假设某条街上每一公里就有一个公共汽车站,并且乘车费用如下表:
公里数 1 2 3 4 5 6 7 8 9 10
费用 12 21 31 40 49 58 69 79 90 101
而任意一辆汽车从不行驶超过10公里。某人想行驶n公里,假设他可以任意次换车,请你帮他找到一种乘车方案,使得总费用最小
注意:10公里的费用比1公里小的情况是允许的。
输入格式
共两行,第一行为10个不超过200的整数,依次表示行驶1~10公里的费用,相邻两数间用一个空格隔开;第二行为某人想要行驶的公里数(<=100)。
输出格式
仅一行,包含一个整数,表示行使这么远所需要的最小费用。
样例输入
12 21 31 40 49 58 69 79 90 101
15
样例输出
147
分析
状态
dp[i]表示走 i KM的费用
转移
显然,每一个dp[i]都可以由dp[i-k]得到(k<=10,i-k>=0)
转移顺序
- 枚举被更新的dp[i]
- 枚举k(意义同上)
- 更新
初值
dp[i]=0;
代码
#include <iostream>
#define maxn 1000
using namespace std;
long dis,a[11],f[maxn],n,i,j;
int main()
{
for (i=1;i<=10;i++)
cin>>a[i];
cin>>dis;
for (j=1;j<=dis;j++)
{
f[j]=0x3f3f3f3f;
for (i=1;i<=10;i++)
if (j-i>=0 && f[j-i]+a[i]<f[j])
f[j]=f[j-i]+a[i];
}
cout<<f[dis]<<endl;
return 0;
}