题1:
利用某公司的年销售额Y与个人支配收入,商品价格
,广告费
的历年统计数据,研究Y关于
,
,
的回归关系,得到回归方程为:
Y = 3573.879 + 6.687-25.051
+ 9.316
(1981.741) (1.192) (24.515) (2.737)
R² = 0.839 , F = 13.847 , MSe = 54852.250 , n = 12
(1)说明回归方程中各回归系数的含义。
(2)给出方差分析表,并检验线性回归效果是否显著。
(3)求各回归系数的置信度95%的置信区间,并说明哪些系数是显著的。
(4)预测当=500,
=80,
=100时的平均年销售额。
( a = 0.05 , = 4.07 ,
= 2.3060 ,
= 2.1788
解1:
= 6.687,个人可支配收入增加或减少1万元,公司的年销量增加或减少6.687万元。
= 25.051, 商品价格增加或减少1元,公司的年销量减少或增加25.051元。
= 9.316, 广告费增加或减少1万元,公司的年销量增加或减少9.316万元。
解2:
- 方差分析表
(P,n-P-1) ,其中元个数P= 3, n =12,带入公式
- n = n-P-1 = 12 - 3 - 1 = 8.
= 4.07, 因为F = 13.847
- 13.847
4.07,回归效果显著。
解3:
- 回归系数置信区间公式:t =
- a = 1-0.95 = 0.05
- n = n-P-1 = 12 - 3 - 1 = 8
=
= 2.3060
- 所以拒绝域
> 2.3060
=
= 6.687 / 1.192 = 5.6099
=
= -25.051 / 24.515 = -1.0219
=
= 9.316 / 2.737 = 3.4037
- 置信区间公式:
- S1 = 6.687
2.3060 * 5.6099 = [-6.2494 , 19.6234]
- S2 = -25.051
2.3060 * -1.0219 = [-27.4075 , -22.6945]
- S3 = 9.316
2.3060 * 3.4037 = [1.4671, 17.1649]
- 不拒绝
= 0,拒绝
= 0,
= 0;
- 所以
不显著,
显著
解4:
- 带入预测值
- Y = 3573.879 + 6.687 * 500 - 25.05 * 180 + 9.316 * 100 = 5844.899
题2
某地区的一种消费品,其销售额Y(单位:百万元)与该地区的居民可支配收入(单位:元)、该类消费品的价格指数
(单位:%)及其他消费品的平均价格指数
(单位:%)有关,现利用该地区18年的销售数据,建立的线性回归方程为
Y = -6.576 + 0.076 + 0.426
- 0.322
(0.022) (0.164) (0.139)
R^2=0.982,F=250.479,n=18
1)说明回归方程中各回归系数的含义
2)判断线性回归效果是否显著(α=0.05)
3)求各回归系数的置信度95%的置信区间,并说明他们的显著性
4)预测当=160,
=110,
=100时的销售额
F0.05(3.14) = 3.34,t0.025(14) = 2.145,t0.025(18) = 2.101
解1:
-
= 0.076,居民可支配收入增加或减少1万元,其销售额增加或减少0.076百万元。
= 0.426, 商品价格增加或减少1%,其销售额增加或减少0.426百万元。
= 0.322, 广告费增加或减少1%,公司的年销量减少或增加 0.322百万元。
解2:
- 方差分析表
(P,n-P-1) ,其中元个数P= 3, n =18,带入公式
- n = n-P-1 = 18 - 3 - 1 = 14.
= 3.34, 因为F = 250.479
- 250.479
3.34,回归效果显著。
解3:
- 回归系数置信区间公式:t =
- a = 1-0.95 = 0.05
- n = n-P-1 = 18 - 3 - 1 = 14
=
= 2.145
- 所以拒绝域
> 2.145
=
= 0.076/ 0.022= 3.4545
=
= 0.426 / 0.164= 2.8171
=
= -0.322/ 0.139= -2.3165
- 置信区间公式:
- S1 = 0.076
2.145* 3.4545= [-7.3339, 7.4859]
- S2 = 0.426
2.145* 2.8171 = [-5.617,6.469]
- S3 = -0.322
2.145* -2.3165= [-5.2909, 4.6469]
- 不拒绝
= 0,
= 0,
= 0;
- 所以
不显著
解4:
- 带入预测值
-
Y = -6.576 + 0.076
+ 0.426
- 0.322
-
Y =-6.576 +0.076*160+0.426*110 - 0.322*100 = -6.576 +12.16 + 46.86 - 32.2 = 20.244