统计学考研笔记:回归方程计算题

题1:

利用某公司的年销售额Y与个人支配收入X_{1},商品价格X_{2},广告费X_{3}的历年统计数据,研究Y关于X_{1}X_{2}X_{3}的回归关系,得到回归方程为:

Y = 3573.879 + 6.687X_{1}-25.051X_{2}  + 9.316X_{3}

     (1981.741)    (1.192)     (24.515)      (2.737)

R² = 0.839 , F = 13.847 , MSe = 54852.250 , n = 12

(1)说明回归方程中各回归系数的含义。

(2)给出方差分析表,并检验线性回归效果是否显著。

(3)求各回归系数的置信度95%的置信区间,并说明哪些系数是显著的。

(4)预测当X_{1}=500,X_{2}=80,X_{3}=100时的平均年销售额。

( a = 0.05 , F_{0.05}(3,8) = 4.07 ,  t_{0.025}(8) = 2.3060 , t_{0.025}(12) = 2.1788

解1:

  1. \widehat{b} = 6.687,个人可支配收入增加或减少1万元,公司的年销量增加或减少6.687万元。
  2. \widehat{c} = 25.051, 商品价格增加或减少1元,公司的年销量减少或增加25.051元。
  3. \widehat{a} = 9.316, 广告费增加或减少1万元,公司的年销量增加或减少9.316万元。

解2:

  1. 方差分析表F_{a}(P,n-P-1) ,其中元个数P= 3, n =12,带入公式
  2. n = n-P-1 = 12 - 3 - 1 = 8.
  3. F_{0.05}(3,8) = 4.07, 因为F = 13.847
  4.  13.847 \geq 4.07,回归效果显著。

解3:

  1. 回归系数置信区间公式:t = \frac{\widehat{\beta}}{S_{\widehat{\beta}}}
  2. a = 1-0.95 = 0.05
  3. n = n-P-1 = 12 - 3 - 1 = 8
  4. t_{\frac{a}{2}}(n) = t_{0.025}(8) = 2.3060
  5. 所以拒绝域 \left | t \right | > 2.3060
  6. S_{\widehat{\beta _{1}}} = \frac{\widehat{\beta_{}1}}{t_{1}} = 6.687 / 1.192 = 5.6099
  7. S_{\widehat{\beta _{2}}} = \frac{\widehat{\beta_{2}}}{t_{2}} = -25.051 / 24.515 = -1.0219
  8. S_{\widehat{\beta _{3}}} = \frac{\widehat{\beta_{3}}}{t_{3}} = 9.316 / 2.737 = 3.4037
  9. 置信区间公式:\widehat{\beta }\pm t_{\frac{a}{2}}(8)S_{\widehat{\beta }}
  10. S1 = 6.687 \pm  2.3060 * 5.6099 = [-6.2494 , 19.6234]
  11. S2 = -25.051 \pm  2.3060 * -1.0219 = [-27.4075 , -22.6945]
  12. S3 = 9.316 \pm  2.3060 * 3.4037 = [1.4671, 17.1649]
  13. 不拒绝\beta_{1} = 0,拒绝 \beta_{2} = 0,\beta_{3} = 0;
  14. 所以\beta_{1}不显著,\beta_{2}  \beta_{3}显著

解4: 

  1. 带入预测值
  2. Y =  3573.879 + 6.687 * 500 - 25.05 * 180  + 9.316 * 100 = 5844.899

题2

        某地区的一种消费品,其销售额Y(单位:百万元)与该地区的居民可支配收入X_{1}(单位:元)、该类消费品的价格指数X_{2}(单位:%)及其他消费品的平均价格指数X_{3}(单位:%)有关,现利用该地区18年的销售数据,建立的线性回归方程为

Y = -6.576 + 0.076X_{1} + 0.426X_{2} - 0.322X_{3}

                      (0.022)      (0.164)     (0.139)

R^2=0.982F=250.479n=18

1)说明回归方程中各回归系数的含义

2)判断线性回归效果是否显著(α=0.05

3)求各回归系数的置信度95%的置信区间,并说明他们的显著性

4)预测当X_{1}=160,X_{2}=110,X_{3}=100时的销售额

 F0.05(3.14) = 3.34,t0.025(14) = 2.145,t0.025(18) = 2.101 

解1:

  1.  \widehat{b} = 0.076居民可支配收入增加或减少1万元,其销售额增加或减少0.076百万元。
  2. \widehat{c} = 0.426, 商品价格增加或减少1%其销售额增加或减少0.426百万元。
  3. \widehat{a} = 0.322, 广告费增加或减少1%,公司的年销量减少或增加 0.322百万元。

解2:

  1. 方差分析表F_{a}(P,n-P-1) ,其中元个数P= 3, n =18,带入公式
  2. n = n-P-1 = 18 - 3 - 1 = 14.
  3. F_{0.05}(3,14) = 3.34, 因为F = 250.479
  4.  250.479 \geq 3.34,回归效果显著。

解3:

  1. 回归系数置信区间公式:t = \frac{\widehat{\beta}}{S_{\widehat{\beta}}}
  2. a = 1-0.95 = 0.05
  3. n = n-P-1 = 18 - 3 - 1 = 14
  4. t_{\frac{a}{2}}(n) = t_{0.025}(14) = 2.145
  5. 所以拒绝域 \left | t \right | > 2.145
  6. S_{\widehat{\beta _{1}}} = \frac{\widehat{\beta_{}1}}{t_{1}} = 0.0760.022= 3.4545
  7. S_{\widehat{\beta _{2}}} = \frac{\widehat{\beta_{2}}}{t_{2}} = 0.4260.164= 2.8171
  8. S_{\widehat{\beta _{3}}} = \frac{\widehat{\beta_{3}}}{t_{3}} = -0.3220.139= -2.3165
  9. 置信区间公式:\widehat{\beta }\pm t_{\frac{a}{2}}(14)S_{\widehat{\beta }}
  10. S1 = 0.076\pm  2.145* 3.4545= [-7.3339, 7.4859]
  11. S2 =  0.426\pm  2.145* 2.8171 = [-5.617,6.469]  
  12. S3 = -0.322\pm  2.145*  -2.3165= [-5.2909, 4.6469] 
  13. 不拒绝\beta_{1} = 0, \beta_{2} = 0,\beta_{3} = 0;
  14. 所以\beta_{1}\beta_{2}  \beta_{3}不显著

解4: 

  1. 带入预测值
  2.  Y = -6.576 + 0.076X_{1} + 0.426X_{2} - 0.322X_{3}

  3. Y =-6.576 +0.076*160+0.426*110 - 0.322*100 =  -6.576 +12.16 + 46.86 - 32.2 = 20.244

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lizz666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值