全卷积网络FCN---Gluon

       全卷积网络(fully convolutional network,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换 。与之前介绍的卷积神经网络有所不同,全卷积网络通过转置卷积(transposed convolution)层将中间层特征图的高和宽变换回输入图像的尺寸,从而令预测结果与输入图像在空间维(高和宽)上一一对应:给定空间维上的位置,通道维的输出即该位置对应像素的类别预测。

下面先导入实验数据包和模块,再解释转置卷积层。

import os
import tarfile
from mxnet import gluon
​
#下载VOC数据集并放到data_root目录下,下载地址为http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#data
data_root = '../data'
voc_root = data_root + '/VOCdevkit/VOC2012'
url = ('http://host.robots.ox.ac.uk/pascal/VOC/voc2012'
       '/VOCtrainval_11-May-2012.tar')
sha1 = '4e443f8a2eca6b1dac8a6c57641b67dd40621a49'
fname = gluon.utils.download(url, data_root, sha1_hash=sha1)
​
if not os.path.isfile(voc_root+'/ImageSets/Segmentation/train.txt'): 
    with tarfile.open(fname, 'r') as f:
        f.extractall(data_root)

以下代码将训练图片和标注读入内存 

from mxnet import image
​
#定义函数将训练图片和标注按序读进内存
def read_images(root=voc_root, train=True):
    txt_fname = root + '/ImageSets/Segmentation/' + ('train.txt' if train
                                                     else 'val.txt')
    with open(txt_fname, 'r') as f:
        images = f.read().split()
    n = len(images)
    data, label = [None] * n, [None] * n
    for i, fname in enumerate(images):
        data[i] = image.imread('%s/JPEGImages/%s.jpg' % (root, fname))
        label[i] = image.imread('%s/SegmentationClass/%s.png' %(root, fname))
    return data, label

下面画出前面三张图片和它们对应的标号。在标号中,白色代表边框黑色代表背景,其他不同的颜色对应不同物体。 

import sys
sys.path.append('..')
import utils
​
train_images, train_labels = read_images()
​
imgs = []
for i in range(3):
    imgs += [train_images[i], train_labels[i]]
​
utils.show_images(imgs, nrows=3, ncols=2, figsize=(12,8))
[im.shape for im in imgs]

[(281, 500, 3),
(281, 500, 3),
(375, 500, 3),
(375, 500, 3),
(375, 500, 3),
(375, 500, 3)]
   

同时注意到图片的宽度基本是500,但高度各不一样。为了能将多张图片合并成一个批量来加速计算,我们需要输入图片都是同样的大小。之前我们通过imresize来将他们调整成同样的大小。但在语义分割里,我们需要对标注做同样的变化来达到像素级别的匹配。但调整大小将改变像素颜色,使得再将它们映射到物体类别变得困难。这里我们仅仅使用剪切来解决这个问题。就是说对于输入图片,我们随机剪切出一个固定大小的区域,然后对标号图片做同样位置的剪切。


def rand_crop(data, label, height, width):
    data, rect = image.random_crop(data, (width, height))
    label = image.fixed_crop(label, *rect)
    return data, label
​
imgs = []
for _ in range(3):
    imgs += rand_crop(train_images[0], train_labels[0], 200, 300)
​
utils.show_images(imgs, nrows=3, ncols=2, figsize=(12,8))

列出每个物体和背景对应的RGB值

classes = ['background','aeroplane','bicycle','bird','boat',
           'bottle','bus','car','cat','chair','cow','diningtable',
           'dog','horse','motorbike','person','potted plant',
           'sheep','sofa','train','tv/monitor']
# RGB color for each class
colormap = [[0,0,0],[128,0,0],[0,128,0], [128,128,0], [0,0,128],
            [128,0,128],[0,128,128],[128,128,128],[64,0,0],[192,0,0],
            [64,128,0],[192,128,0],[64,0,128],[192,0,128],
            [64,128,128],[192,128,128],[0,64,0],[128,64,0],
            [0,192,0],[128,192,0],[0,64,128]]
​
len(classes), len(colormap)

输出结果:(21, 21)

给定一个标号图片,我们就可以将每个像素对应的物体标号找出来

import numpy as np
from mxnet import nd

cm2lbl = np.zeros(256**3)
for i,cm in enumerate(colormap):
    cm2lbl[(cm[0]*256+cm[1])*256+cm[2]] = i
def image2label(im):
    data = im.astype('int32').asnumpy()
    idx = (data[:,:,0]*256+data[:,:,1])*256+data[:,:,2]
    return nd.array(cm2lbl[idx])

可见第一张训练图片的标号里面属于飞机的像素被标记成了1

y = image2label(train_labels[0])
y[105:115, 130:140]

输出结果: 

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0. 0. 1. 1. 1.]
 [0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 1. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 1. 1. 1. 1. 1.]
 [0. 0. 0. 0. 1. 1. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 1. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 1. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 0. 1. 1. 1. 1.]
 [0. 0. 0. 0. 0. 0. 0. 0. 1. 1.]]
<NDArray 10x10 @cpu(0)>

现在我们可以定义数据读取了。每一次我们将图片和标注随机剪切到要求的形状,并将标注里每个像素转成对应的标号。

简单起见我们将小于要求大小的图片全部过滤掉了。

from mxnet import gluon
from mxnet import nd

​rgb_mean = nd.array([0.485, 0.456, 0.406])
rgb_std = nd.array([0.229, 0.224, 0.225])

def normalize_image(data):
    return (data.astype('float32') / 255 - rgb_mean) / rgb_std

class VOCSegDataset(gluon.data.Dataset):

    def _filter(self, images):
        return [im for im in images if (
            im.shape[0] >= self.crop_size[0] and
            im.shape[1] >= self.crop_size[1])]

    def __init__(self, train, crop_size):
        self.crop_size = crop_size
        data, label = read_images(train=train)
        data = self._filter(data)
        self.data = [normalize_image(im) for im in data]
        self.label = self._filter(label)
        print('Read '+str(len(self.data))+' examples')

​    def __getitem__(self, idx):
        data, label = rand_crop(
            self.data[idx], self.label[idx],
            *self.crop_size)
        data = data.transpose((2,0,1))
        label = image2label(label)
        return data, label

​    def __len__(self):
        return len(self.data)

我们采用 320×480320×480 的大小用来训练,注意到这个比前面我们使用的 224×224224×224 要大上很多。但是同样我们将长宽都定义成了32的整数倍。

input_shape = (320, 480)
voc_train = VOCSegDataset(True, input_shape)
voc_test = VOCSegDataset(False, input_shape)

输出结果: 

Read 1114 examples
Read 1078 examples

最后定义批量读取。可以看到跟之前的不同是批量标号不再是一个向量,而是一个三维数组。

batch_size = 64
train_data = gluon.data.DataLoader(
    voc_train, batch_size, shuffle=True,last_batch='discard')
test_data = gluon.data.DataLoader(
    voc_test, batch_size,last_batch='discard')
​
for data, label in train_data:
    print(data.shape)
    print(label.shape)
    break

输出结果: 

(64, 3, 320, 480)
(64, 320, 480)

全连接卷积网络:

       在数据的处理过程我们看到语义分割跟前面介绍的应用的主要区别在于,预测的标号不再是一个或者几个数字,而是每个像素都需要有标号。在卷积神经网络里,我们通过卷积层和池化层逐渐减少数据长宽但同时增加通道数。例如ResNet18里,我们先将输入长宽减少32倍,由3×224×2243×224×224的图片转成512×7×7512×7×7的输出,应该全局池化层变成512512长向量,然后最后通过全链接层转成一个长度为nn的输出向量,这里nn是类数,既num_classes。但在这里,对于输出为3×320×4803×320×480的图片,我们需要输出是n×320×480n×320×480,就是每个输入像素都需要预测一个长度为nn的向量。

        全连接卷积网络(FCN)的提出是基于这样一个观察。假设ff是一个卷积层,而且y=f(x)y=f(x)。那么在反传求导时,∂f(y)∂f(y)会返回一个跟xx一样形状的输出。卷积是一个对偶函数,就是∂2f=f∂2f=f。那么如果我们想得到跟输入一样的输入,那么定义g=∂fg=∂f,这样g(f(x))g(f(x))就能达到我们想要的。 具体来说,我们定义一个卷积转置层(transposed convolutional, 也经常被错误的叫做deconvolutions),它就是将卷积层的forward和backward函数兑换。下面例子里我们看到使用同样的参数,除了替换输入和输出通道数外,Conv2DTranspose可以将nn.Conv2D的输出还原其输入大小。

from mxnet.gluon import nn
​
conv = nn.Conv2D(10, kernel_size=4, padding=1, strides=2)
conv_trans = nn.Conv2DTranspose(3, kernel_size=4, padding=1, strides=2)
​
conv.initialize() #初始化
conv_trans.initialize()
​
x = nd.random.uniform(shape=(1,3,64,64))
y = conv(x)
​
print('Input:', x.shape)
print('After conv:', y.shape)
print('After transposed conv', conv_trans(y).shape)
输出结果:
Input: (1, 3, 64, 64)
After conv: (1, 10, 32, 32)
After transposed conv (1, 3, 64, 64)

        另外一点要注意的是,在最后的卷积层我们同样使用平化层(nn.Flattern)或者(全局)池化层来使得方便使用之后的全连接层作为输出。但是这样会损害空间信息,而这个对语义分割很重要。一个解决办法是去掉不需要的池化层,并将全连接层替换成1×11×1卷基层。

所以给定一个卷积网络,FCN主要做下面的改动:

  • 替换全连接层成1×11×1卷基
  • 去掉过于损失空间信息的池化层,例如全局池化
  • 最后接上卷积转置层来得到需要大小的输出
  • 为了训练更快,通常权重会初始化称预先训练好的权重

FCN

下面我们基于Resnet18来创建FCN, 首先下载一个预先训练好的模型。 

from mxnet.gluon.model_zoo import vision as models
​
pretrained_net = models.resnet18_v2(pretrained=True)
​
(pretrained_net.features[-4:], pretrained_net.output)

输出结果: 

(HybridSequential(
   (0): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=512)
   (1): Activation(relu)
   (2): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True)
   (3): Flatten
 ), Dense(512 -> 1000, linear))

       看到feature模块最后两层是GlobalAvgPool2D和Flatten,都是我们不需要的。所以我们定义一个新的网络,它复制除了最后两层的features模块的权重。

net = nn.HybridSequential()
for layer in pretrained_net.features[:-2]:
    net.add(layer)
​
x = nd.random.uniform(shape=(1,3,*input_shape))
print('Input:', x.shape)
print('Output:', net(x).shape)

输出结果: Input: (1, 3, 320, 480)
Output: (1, 512, 10, 15)

然后接上一个通道数等于类数的 1×11×1 卷积层。注意到net已经将输入长宽减少了32倍。那么我们需要接入一个strides=32的卷积转置层。我们使用一个比stides大两倍的kernel,然后补上适当的填充。

num_classes = len(classes)
​
with net.name_scope():
    net.add(
        nn.Conv2D(num_classes, kernel_size=1),
        nn.Conv2DTranspose(num_classes, kernel_size=64, padding=16, strides=32)
    )

训练

训练的时候需要初始化新添加的两层。我们可以随机初始化,但实际中发现将卷积转置层初始化成双线性差值函数可以使得训练更容易。

def bilinear_kernel(in_channels, out_channels, kernel_size):
    factor = (kernel_size + 1) // 2
    if kernel_size % 2 == 1:
        center = factor -1
    else:
        center = factor - 0.5
    og = np.ogrid[:kernel_size, :kernel_size]
    filt = (1 - abs(og[0] - center) / factor) * \
           (1 -  abs(og[1] - center) / factor)
    weight = np.zeros(
        (in_channels, out_channels, kernel_size, kernel_size),
        dtype='float32')
    weight[range(in_channels), range(out_channels), :, :] = filt
    return nd.array(weight)

下面代码演示上述的初始化等价于对图片进行双线性差值放大​

from matplotlib import pyplot as plt
​
x = train_images[0]
print('Input',x.shape)
x = x.astype('float32').transpose((2,0,1)).expand_dims(axis=0)/255
​
conv_trans = nn.Conv2DTranspose(
        3, in_channels=3, kernel_size=8, padding=2, strides=4)
conv_trans.initialize()
conv_trans(x)
conv_trans.weight.set_data(bilinear_kernel(3,3,8))
​
y = conv_trans(x)
y = y[0].clip(0,1).transpose((1,2,0))
print('Output', y.shape)
​
plt.imshow(y.asnumpy())
plt.show()
输出结果:
         Input (281, 500, 3)
         Output (1124, 2000, 3)

       网络的初始化包括了三部分。主体卷积网络从训练好的ResNet18复制得来,替代ResNet18最后全连接的卷积层使用随机初始化。最后的卷积转置层则使用双线性差值。对于卷积转置层,我们可以自定义一个初始化类。简单起见,这里我们直接通过权重的set_data函数改写权重。记得我们介绍过Gluon使用延后初始化来减少构造网络时需要制定输入大小。所以我们先随意初始化它,计算一次forward,然后再改写权重。

from mxnet import init
​
conv_trans = net[-1]
conv_trans.initialize(init=init.Zero())
net[-2].initialize(init=init.Xavier())
​
x = nd.zeros((batch_size, 3, *input_shape))
net(x)
​
shape = conv_trans.weight.data().shape
conv_trans.weight.set_data(bilinear_kernel(*shape[0:3]))

可以真正开始训练了。值得一提的是我们使用卷积转置层的通道来预测像素的类别。所以在做softmax和预测的时候我们需要使用通道这个维度,既维度1。所以在SoftmaxCrossEntropyLoss里加入了额外了axis=1选项。其他的部分跟之前的训练一致。

import sys
sys.path.append('..')
import utils

loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)

ctx = utils.try_all_gpus()
net.collect_params().reset_ctx(ctx)

trainer = gluon.Trainer(net.collect_params(),
                        'sgd', {'learning_rate': .1, 'wd':1e-3})

utils.train(train_data, test_data, net, loss,
            trainer, ctx, num_epochs=10)
输出结果:
Start training on  [gpu(0), gpu(1)]
Epoch 0. Loss: 1.587, Train acc 0.72, Test acc 0.80, Time 72.4 sec
Epoch 1. Loss: 0.581, Train acc 0.83, Test acc 0.84, Time 35.7 sec
Epoch 2. Loss: 0.485, Train acc 0.85, Test acc 0.83, Time 35.7 sec
Epoch 3. Loss: 0.420, Train acc 0.87, Test acc 0.84, Time 35.6 sec
Epoch 4. Loss: 0.357, Train acc 0.88, Test acc 0.85, Time 35.6 sec
Epoch 5. Loss: 0.323, Train acc 0.89, Test acc 0.85, Time 35.6 sec
Epoch 6. Loss: 0.286, Train acc 0.91, Test acc 0.85, Time 35.7 sec
Epoch 7. Loss: 0.285, Train acc 0.90, Test acc 0.86, Time 35.6 sec
Epoch 8. Loss: 0.255, Train acc 0.91, Test acc 0.85, Time 35.6 sec
Epoch 9. Loss: 0.245, Train acc 0.92, Test acc 0.86, Time 35.7 sec

预测

def predict(im):
    data = normalize_image(im)
    data = data.transpose((2,0,1)).expand_dims(axis=0)
    yhat = net(data.as_in_context(ctx[0]))
    pred = nd.argmax(yhat, axis=1)
    return pred.reshape((pred.shape[1], pred.shape[2]))
​
def label2image(pred):
    x = pred.astype('int32').asnumpy()
    cm = nd.array(colormap).astype('uint8')
    return nd.array(cm[x,:])

我们读取前几张测试图片并对其进行预测:

test_images, test_labels = read_images(train=False)
​
n = 6
imgs = []
for i in range(n):
    x = test_images[i]
    pred = label2image(predict(x))
    imgs += [x, pred, test_labels[i]]
​
utils.show_images(imgs, nrows=n, ncols=3, figsize=(6,10))

输出结果:

参考文献:

http://zh.d2l.ai/chapter_computer-vision/fcn.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值