FlyAI算法竞赛平台官方介绍如下:
FlyAI 是隶属于北京智能工场科技有限公司旗下,为AI开发者 (深度学习)提供数据竞赛并支持GPU离线训练的一站式服务平台。每周免费提供项目开源算法样例,样例所使用开发框架涉及TensorFlow、Keras、PyTorch. 支持算法能力变现以及快速的迭代算法模型。挑战者,都在FlyAI!
四大特点:
1. 高质量的数据集、多领域的开源项目案例
1.1 项目涉及领域:自然语言处理、图像识别、语音识别等
1.2 每周更新高质量项目专属代码样例,免费下载查看
1.3 支持多平台运行,一键配置学习环境
2 多卡GPU资源 一键使用
2.1 提供强大算力,快速迭代模型质量
2.2 一键提交离线训练服务,及时通知模型训练进度
3 能力变现、竞赛式项目实力打榜
3.1 挑战项目刷新排行榜,赢得高额悬赏
3.2 使用不同深度学习框架验证,提升自己的算法能力
4 全行业的数据化及AI需求发布平台
4.1 通过算法众包,建立精准的预测模型,为产品数据增长赋能
4.2 探索数据人才与企业需求的生态构建
FlyAI上现有的自然语言处理相关竞赛不是太多,不过官方表态会不断上新,感兴趣的同学可以密切关注。目前FlyAI上NLP相关的竞赛包括:今日头条新闻分类、Quora-检测两个问题是否重复、用户商场评价情感分析、搜狗新闻文本分类预测、美国点评网站Yelp评价预测赛、测测星座文本分类。有实际的奖金,并奖励FAI积分可用于平台上GPU训练资源消耗。
使用说明:
1. 下载项目并解压
2.打开运行,输入cmd,打开终端
Win+R 输入cmd
3. 使用终端进入到项目的根目录下
首先进入到项目对应的磁盘中,然后执行
cd path\to\project
Windows用户使用 flyai.exe
4. 初始化环境并登录
下载完成之后,执行下列命令并使用微信扫码登录
flyai.exe init
登录成功之后,会自动下载运行所需环境
5. 本地开发调试
执行
flyai.exe test
安装项目所需依赖,并运行 main.py
如果使用本地IDE开发,可以自行安装 requirements.txt 中的依赖,运行 main.py 即可
6.提交训练到GPU
项目中如有新的引用,需加入到 requirements.txt 文件中
在终端下执行
flyai.exe train
返回sucess状态,代表提交离线训练成功
默认训练成功后不公开在项目排行榜中,公开项目需在提交训练时执行
flyai.exe train -p=1
完整训练设置执行代码示例:
flyai.exe train -p=1 -b=32 -e=100
通过执行训练命令,本次训练循环 100 次,每次训练读取的数据量为 32 ,公开提交模型。
下面截图显示的是在头条新闻分类中每次训练数据量为512, 训练循环2000次,训练提交成功后可以根据返回的链接查看实时的训练过程及日志。也可以通过绑定的微信或者邮箱查看训练结果。
参考资料: