图神经网络
文章平均质量分 93
这张生成的图像能检测吗
方向:机器视觉,主攻目标检测、GAN图像生成、低照度图像处理、模型三维结构设计、单片机开发板控制。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
(论文速读)GNS:学习用图网络模拟复杂物理
一种基于图网络的物理模拟框架GNS,能够学习模拟流体、刚体和可变形材料等多种复杂物理现象。该框架将物理系统表示为粒子图,通过图神经网络进行消息传递来计算动力学。实验表明,GNS能从单步预测推广到长期模拟,处理训练时10倍以上的粒子数量。研究发现消息传递步数和训练噪声对性能至关重要,相对编码方式显著优于绝对编码。GNS在17个数据集上表现出色,展现了强大的泛化能力,为复杂物理问题的正演和逆问题提供了新的解决方案。原创 2026-01-17 15:35:42 · 941 阅读 · 0 评论 -
(论文速读)DIFFPOOL:基于可微池的层次图表示学习
DIFFPOOL,一种可微的层次图池化方法,用于解决现有图神经网络(GNN)在图分类任务中缺乏层次表示能力的问题。DIFFPOOL通过双GNN架构学习软聚类分配矩阵,实现端到端的层次化图表示学习。实验表明,该方法在5个基准数据集上平均提升5-10%准确率,且计算效率优于现有池化方法。论文还深入分析了DIFFPOOL的自适应聚类特性、理论保证和实现细节,同时指出了训练稳定性等局限性。该工作为图神经网络引入层次化思维提供了创新解决方案。原创 2026-01-17 15:35:21 · 1038 阅读 · 0 评论 -
(论文速读)R-GCNs:关系图卷积网络
介绍了关系图卷积网络(R-GCN)在知识图谱补全中的应用。针对知识图谱中常见的实体分类和链接预测任务,R-GCN通过关系感知的消息传递机制,为不同关系类型设计特定权重矩阵,有效处理多关系数据。为解决参数爆炸问题,提出基函数分解和块对角分解两种正则化方法。实验表明,R-GCN在FB15k-237数据集上MRR指标比DistMult基线提升29.8%,在AIFB数据集上达到95.83%的分类准确率。原创 2026-01-12 16:02:09 · 644 阅读 · 0 评论 -
(论文速读)GraphSAGE:大型图的归纳表示学习
GraphSAGE,一种用于大型图归纳表示学习的创新框架。与传统的直推式节点嵌入方法不同,GraphSAGE通过学习节点特征聚合函数而非单独节点嵌入,实现了对未见节点的有效泛化。该方法通过采样固定数量邻居并采用三种聚合策略(Mean、LSTM、Pooling)生成节点嵌入,在引文网络、Reddit社区和蛋白质相互作用数据集上显著优于基线方法,最高提升55%准确率。理论分析证明GraphSAGE能有效捕捉图结构特征,特别适合处理动态变化的图数据,为推荐系统、社交网络分析等领域提供了高效解决方案。原创 2026-01-03 22:40:36 · 1029 阅读 · 0 评论 -
(论文速读)MPNN:量子化学的神经信息传递
提出了消息传递神经网络(MPNNs)框架,统一了多种量子化学预测中的图神经网络模型。MPNN通过迭代的消息传递和聚合过程计算分子性质,具有图同构不变性。作者在MPNN框架内创新性地引入了边网络、虚拟图元素、Set2Set读出函数和多塔架构等改进。在QM9数据集上的实验表明,该方法在13个分子性质预测任务中均达到或超越化学精度要求,显著优于现有方法。特别是对于偶极矩和电子空间范围等关键性质,误差比率较最佳基线降低了57-83%。该研究为分子性质的快速准确预测提供了强大工具,为药物发现和材料科学开辟了新途径。原创 2026-01-02 00:44:12 · 791 阅读 · 0 评论 -
(论文速读)LightGCN:简化和增强图卷积网络的推荐
LightGCN模型,通过简化传统图卷积网络(GCN)的设计来提升推荐系统性能。研究发现,GCN中的特征变换和非线性激活操作在协同过滤任务中不仅无益反而有害。LightGCN仅保留核心的邻域聚合组件,采用线性传播方式学习用户和物品嵌入,并通过各层嵌入的加权组合作为最终表示。实验表明,该模型在相同设置下比现有最佳GCN推荐模型性能提升约16%,且更易实现和训练。理论分析证实了这种简化设计的合理性,为推荐系统中的图神经网络应用提供了新思路。原创 2026-01-02 00:44:01 · 1091 阅读 · 0 评论 -
(论文速读)GIN:理论上最强大的GNN架构
分析了图神经网络(GNN)的表达能力,揭示了其理论局限。研究表明,现有GNN变体(如GCN和GraphSAGE)无法区分某些简单图结构,因其聚合函数不具备单射性。基于此,作者提出了理论上最具表达力的GIN架构,该模型采用求和聚合与多层感知机组合,其判别能力与Weisfeiler-Lehman同构测试相当。实验验证了理论发现,GIN在多个图分类基准上达到最优性能。该研究为GNN设计提供了重要理论指导,明确了不同聚合函数的适用场景与局限性。原创 2025-12-31 14:11:32 · 815 阅读 · 0 评论 -
(论文速读)基于物理导图卷积网络的工业复合材料损伤严重程度和区域识别
一种物理引导的图卷积网络(GCN)框架,用于碳纤维增强聚合物(CFRP)层合板的损伤评估和定位。通过将Lamb波信号转化为图表示,设计了三种邻接矩阵变体:全连接(GCN-FC)、激励器聚类(GCN-CA)和共享传播路径(GCN-CP)。实验结果表明,物理引导的GCN-CA和GCN-CP模型显著优于传统方法,仅用4个传感器即实现96.09%的损伤程度识别和99.09%的定位准确率。该方法突破了传统监测系统依赖密集传感器和复杂成像的局限,为复合材料结构健康监测提供了高效解决方案。原创 2025-12-30 16:15:26 · 806 阅读 · 0 评论 -
(论文速读)VJTNN+GAN分子优化的图到图翻译
一种基于图到图转换的分子优化方法,将分子优化建模为多模态图翻译问题。通过连接树编码器-解码器架构,模型能够学习分子结构间的有效转换,并使用潜在向量显式控制不同输出分布。创新性地采用对抗训练方法对齐分子分布,解决了分子优化中输出多样性的关键挑战。实验表明,该方法在多个分子优化任务上显著优于现有基线,在提升分子性质的同时保持生成多样性和新颖性。这项研究为分子设计提供了新的端到端学习框架,对药物发现领域具有重要价值。原创 2025-12-27 10:01:43 · 1167 阅读 · 0 评论 -
(论文速读)VGAE:变分图自动编码器
变分图自编码器(VGAE),一种基于变分自编码器的无监督图结构数据学习框架。该模型通过图卷积网络编码器和内积解码器,学习图的潜在表示。实验表明,在引文网络链接预测任务中,VGAE通过有效结合节点特征,性能显著优于谱聚类和DeepWalk等基线方法。特别地,引入节点特征可使AUC提升7.4%-11.9%,验证了模型的有效性。VGAE为图表示学习提供了简洁而强大的解决方案。原创 2025-12-27 10:01:16 · 1069 阅读 · 0 评论 -
(论文速读)STSGCN:时空同步图卷积网络
一种新颖的时空同步图卷积网络(STSGCN)框架,用于时空网络数据预测。该方法通过构建局部化时空图实现时空维度的统一建模,设计同步图卷积模块直接捕获复杂的时空相关性,并采用多模块架构处理时空异质性。在四个真实交通数据集上的实验表明,STSGCN显著优于传统分离建模方法,在MAE和MAPE指标上均达到最优性能。消融实验验证了各创新组件的有效性,特别是多模块设计对处理时空异质性的重要作用。该研究为时空数据建模提供了新思路,强调了同步考虑时空维度的重要性。原创 2025-12-26 11:37:54 · 1073 阅读 · 0 评论 -
(论文速读)GAT:图注意神经网络
本文介绍了图注意力网络(GAT),一种新颖的神经网络架构,用于处理图结构数据。GAT通过自注意力机制克服了传统图卷积网络的局限性,能够自适应地为不同邻居节点分配权重,无需复杂矩阵运算或依赖固定图结构。该模型在Cora、Citeseer、Pubmed引文网络和蛋白质-蛋白质相互作用数据集上取得了优异表现,特别在归纳学习任务中显著优于GraphSAGE方法36.1%。GAT的计算复杂度与GCN相当,同时提供了更好的可解释性,已成为图神经网络领域的重要基准模型。原创 2025-12-25 16:37:25 · 842 阅读 · 0 评论 -
(论文速读)GCN:基于图卷积网络的半监督分类
本文介绍了ICLR 2017发表的图卷积网络(GCN)经典论文,提出了一种基于谱图理论简化的半监督图学习方法。通过一阶近似和重归一化技巧,GCN实现了线性时间复杂度,在引文网络数据集上显著优于传统方法。实验表明,该模型在Cora、Citeseer和Pubmed数据集上达到最优性能,同时揭示了模型深度和参数选择的影响。尽管存在内存需求等局限性,GCN为图神经网络研究奠定了基础,成为该领域的重要里程碑。原创 2025-12-25 16:36:00 · 1356 阅读 · 0 评论
分享