【科研】科研神器 目录1、简介2、工具文献管理软件1)Endnote2)Notepress3)Zotero统计处理软件1)SPSS2)Origin3)GraphPad Prism学术英文词典工具合集1)近义词辨析:https://wikidiff.com/neglect/omit2)语言模型帮你找搭配:https://linggle.com3)科研论文里常见哪些词组:http://www.esoda.org/4)学术用语检索: https://www.phr..
【工具】线上办公神器 目录ProcessOnTower为知笔记小画桌协作白板Apifox参考ProcessOnProcessOn是一款专业在线作图工具,满足多种图形的绘制,包括流程图、思维导图、原型图、BPMN、UML 等,不用频繁切换工具,一个网址满足多样化的作图需求。它支持多人实时协作,即便身处不同的城市也能满足编辑同一个文件的需求。网站社区沉淀了上百万张优质绘图模板文件,内容涵盖互联网、教育、行政等多领域专业内容,已成为专业内容查找的知识库。官网链接:https://proc..
【KD】将“softmax+交叉熵”推广到多标签分类问题 目录简介单标签到多标签众里寻她千百度组合softmax自动确定阈值暮然回首阑珊处统一的loss形式用于多标签分类所以,结论就是参考简介一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。类别不平衡单标签到
【KD】多标签“Softmax+交叉熵”的软标签版本 目录简介巧妙联系形式猜测证明结果实现技巧文章小结参考简介在《将“softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个用于多标签分类的损失函数:这个损失函数有着单标签分类中“Softmax+交叉熵”的优点,即便在正负类不平衡的依然能够有效工作。但从这个损失函数的形式我们可以看到,它只适用于“硬标签”,这就意味着label smoothing、mixup等技巧就没法用了。本文则尝试解决这个问题,提出上述损失函数的一个软标签版本。巧妙联系多标签
【科研】博士学位论文评阅书 目录1、简介2、要点3、评语总评语优秀良中及格问题4、参考1、简介如何审阅博士学位论文,最近有这么一个工作需要我来进行(帮助老板),于是开始搜集相关资料2、要点审博士论文最省力的方式:第一眼打开博士期间发表的论文列表,看发表SCI的数量和分区就大概定个打分基调了。 再根据这个打分基调再看论文的图表,漂亮整齐的适当加分,有瑕疵的适当扣点分。以上是盲审的评分方式。而如果是明审的话肯定是给过的,关系铁的打到95以上,想发展合作关..
【H5】微信端H5页面制作 目录1、简介2、工具iH5易企秀微企秀兔展MAKA有图创客贴24 好玩人人秀意派凡科互动凡科微传单八图百度h5网站制作3、参考1、简介H5页面在微信里面很常见,有很多平台都可以简单地制作一个H5页面,并且这些平台提供了很多模板,于是准备将搜到的几个工具汇总下。不需要什么技术,准备好图片、音乐和介绍方案之类,找工具使用就可以了1、H5制作流程简述:文案策划——设计制作——技术实现2、H5页面的分享形式...
【科研】如何查看自己期刊是不是SCI/EI(含期刊各种信息查询) 目录1、科普2、方法Web of ScienceLetPubJustScienceEI3、参考1、科普SCI创刊于1961年,SCI(科学引文索引 )、EI(工程索引 )、ISTP(科技会议录索引 ) 是世界著名的三大科技文献检索系统,是国际公认的主要检索工具,其中以SCI最为重要。SCI SCI(Science Citation Index)是ISI(Institute Scientific Information)做的数据库--能看到只是题目+摘...
【Latex】用Acrobat剪切pdf文件中图 目录1、动机2、方法3、补充4、参考1、动机因为写开题等报告所需,需要将一些论文中的图裁剪出来使用,为了可以保证图的高清和不失真,开始查找相关方法发现可以通过使用Acrobat直接剪切pdf文件中的图2、方法打开pdf,点击右侧编辑点击上面的裁剪页面裁剪自己想裁剪的区域后,回车两次,得到勾选右侧组织页面得到点击上面提取,勾选提取为单独文件,点击提取按钮,选择存放位置,完成注意:关闭之前文件的时候,选择...
【MikTe安装】最新的MiKTeX替换CTEX默认安装的MiKTeX 目录1、动机2、解决MiKTeX下载MiKTeX安装编译成功测试包更新检查和测试3、参考1、动机前提:之前安装的latex环境安装,具体见【论文准备】ctex + tex studio下载安装_静静喜欢大白的博客-CSDN博客问题:最近要使用国科大的开题报告latex模板,发现当前CTeX套装中的MiKTeX无法使用,发现是因为自带的MiKTeX过于陈旧,很多宏包已经无法自动更新了。因此,需要重新安装新版MiKTeX来解决问题。因此,此文中将从详细阐述..
【KD】2022 CVPR Decoupled Knowledge Distillation 目录1 研究摘要2 研究动机2.1 符号定义2.2 重新推导 KD Loss3 启发式探索3.1 单独使用 TCKD/NCKD 训练3.2 TCKD:传递样本难度相关的知识3.3 NCKD:被抑制的重要成分3.4 启发4 Decoupled Knowledge Distillation5 实验结果5.1 Decoupling 带来的好处5.2 图像分类5.3 目标检测6 扩展性实验和可视化6.1 训练效率6.2 提升大 Teacher...
【KD】2022 CVPR Self-Distillation from the Last Mini-Batch for Consistency Regularization 目录简介DLB 自蒸馏框架1. 本文的任务2. 本文创新与贡献DLB 自蒸馏框架训练机制实验设置结语简介OPPO 研究院联合上海交通大学提出的新的自蒸馏框架DLB,无需额外的网络架构修改,对标签噪声具有鲁棒性,并可大幅节约训练的空间复杂度,在三个基准数据集的实验中达到了 SOTA 性能。深度学习促进人工智能(AI)领域不断发展,实现了许多技术突破。与此同时,如何在有限硬件资源下挖掘模型潜能、提升部署模型的准确率成为了学界和业界的研究热点。其中,知识蒸馏..
【GNN】GNN小结(含HAN) 目录1、CNN、RNN、GNN2、GNN3、GNN分类整体分类细分GNN类别1、RGNN(Recurrent Graph Neural Networks)2. Graph Convolution Networks(图卷积神经网络)3. Graph Attention Networks4. Graph Auto-encoder5. Graph Spatial-Temporal Networks(时空网络)6. Graph Generative Networks(
【GNN】Recent Advances in Reliable Deep Graph Learning 目录简介摘要引言固有噪声的可靠性固有噪声结构噪音属性噪声标签噪声增强技术数据去躁DGL与正则化分布偏移的可靠性图上的分布偏移图的域泛化图上的子种群偏移增强技术不变图表示学习图健壮训练不确定性的量化对抗攻击的可靠性威胁概述操纵式攻击注入式攻击后门式攻击增强技术图处理模型鲁棒化鲁棒训练讨论区别于一般可靠的机器学习统一定义以上威胁的区别结论和未来方向理论框架统一解决.
【Linux】基础 目录前言Linux 基础操作系统什么是 LinuxLinux 系统内核与 Linux 发行套件的区别Linux 对比 WindowsLinux 系统种类终端连接阿里云服务器ShellShell 的种类命令命令行提示符命令格式快捷方式文件和目录文件的组织查看路径浏览和切换目录浏览和创建文件文件的复制和移动文件的删除和链接用户与权限用户群组的管理文件权限管理查找文件locatefind软件仓库
【GNN】压缩学习范式 目录GNN 压缩的学习范式知识蒸馏可以提升性能低精度的 GNN 的量化小结GNN 压缩的学习范式除了数据准备技术和有效的模型架构之外,学习模式,即模型的训练方式,也可以显著提高 GNN 的性能,并且降低延迟。知识蒸馏可以提升性能知识蒸馏(KD)是一种通用的神经网络学习范式,它将知识从高性能但资源密集型的教师模型转移到资源高效的学生身上。KD 的概念最初是由 Hinton 等人提出的,KD 训练学生以匹配教师模型的输出 logits 以及标准的监督学习损失。杨等人.
【随记】2021 ICCV Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks 目录简介摘要引言相关工作GNN网络二值化方法普通二进制GNN和预分析GNN基础Vanilla 1-bit GNN Models挑战和解决方案元邻域聚合器概述Greedy Gumbel AggregatorAdaptable Hybrid AggregatorTraining Strategy实验数据集实现细节图回归节点分类三维物体识别讨论结论点评参考简介摘要本文研究了一种新的元..
【Python】过拟合解决 目录简介如何确定模型是否过拟合?如何防止过拟合交叉验证用更多数据进行训练移除特征早停正则化Dropout总结参考简介在机器学习中,过拟合(overfitting)会使模型的预测性能变差,通常发生在模型过于复杂的情况下,如参数过多等。本文对过拟合及其解决方法进行了归纳阐述。正如巴菲特所言:「近似的正确好过精确的错误。」在机器学习中,如果模型过于专注于特定的训练数据而错过了要点,那么该模型就被认为是过拟合。该模型提供的答案和正确答案相.
【KD】KD 在bert上的应用 简介目录: 蒸馏是什么?怎么蒸BERT? BERT蒸馏有什么技巧?如何调参? 蒸馏代码怎么写?有现成的吗? 今天rumor就结合Distilled BiLSTM/BERT-PKD/DistillBERT/TinyBERT/MobileBERT/MiniLM六大经典模型,带大家把BERT蒸馏整到明明白白!模型蒸馏原理Hinton在NIPS2014[1]提出了知识蒸馏(Knowledge Distillation)的概念,旨在把一个大模型或者多个模型ensemble
【KD】2022 ICLR Cold brew 目录简介Introduction本文主要的方法TEACHER MODELSTUDENT MLP MODEL从标签平滑的角度解释模型实验结论参考简介「题目」:COLD BREW: DISTILLING GRAPH NODE REPRESENTATIONS WITH INCOMPLETE OR MISSING NEIGHBORHOODS「作者」:Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katar
【随记】2017 ICLR Understanding deep learning requires rethinking generalization 目录简介解读摘要引入组织Randomization testsThe role of explicit regularizationFinite sample expressivityThe role of implicit regularization相关工作小结结论参考简介本文章属于偏实验说理得出结论,且无严谨原因和理论支撑的文章。这些工作无疑加深了我们对神经网络的理解,给人们开了个新的视角来看问题。好的文章不仅是讲一个道理,而是给人.