【GNN】ASGNN 具有自适应结构的图神经网络

ASGNN是一种新的图神经网络模型,旨在增强对图结构对抗攻击的鲁棒性。通过同时学习节点特征和自适应图结构,ASGNN在面对噪声或恶意操纵的图数据时,能够提供更细粒度的处理,提高学习到的节点特征的质量,从而提升在下游任务中的性能。实验表明,ASGNN在多种对抗攻击情况下,其分类性能优于现有GNN模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、简介

2、具有自适应结构的图神经网络

动机

方法

贡献

效果

3、参考


1、简介

ASGNN: GRAPH NEURAL NETWORKS WITH ADAPTIVE STRUCTURE

ASGNN: Graph Neural Networks with Adaptive Structure

 看到标题感觉这个文章有吸引到我,于是简单做个笔记mark下

(梯度上更新特征X和结构A:有理论证明)

2、具有自适应结构的图神经网络

动机

图神经网络(GNN)模型在许多机器学习任务中取得了令人印象深刻的成就。然而,许多现有的GNN模型被证明易受对抗性攻击

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值