【综述】AI4肺癌-研究现状和趋势

目录

1、简介

2、相关工作

综述1 2023 Seminars in Cancer Biology Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective

摘要

1. 引言

2. 应用于肺癌的人工智能算法类型

2.1. 机器学习和深度学习

2.2. 自然语言处理

2.3. 强化学习

3. 人工智能在肺癌诊断中的应用

3.1. 人工智能在肺结节筛查与检测中的应用

3.2. 人工智能在肺癌病理分类与诊断中的应用

3.3. 人工智能预测肺癌突变基因

4. 人工智能在肺癌预后中的应用

5. 挑战与机遇

5.1. 局限性与挑战

5.2. 未来方向

6. 结论

综述2 2024 arxiv Medical AI for Early Detection of Lung Cancer: A Survey

摘要

1. 引言

2. 用于肺癌检测的医疗人工智能

2.1. 基于统计学习

2.2. 卷积神经网络(CNN)

2.3. 循环神经网络(RNN)

2.4. 生成对抗网络(GAN)

2.5. 基于 Transformer 的方法

2.6. 混合深度学习方法

3. 文献检索与筛选

4. 数据集和基准

5. 讨论:肺癌检测、分割和分类中的关键技术与突破

5.1. 人工智能驱动的肺癌检测进展讨论

5.2. 人工智能驱动的肺癌分割进展讨论

5.3. 人工智能驱动的肺癌分类进展讨论

​编辑

6. 挑战与未来展望

7. 结论

肺癌(无AI)综述3 2023 Nature Medicine The landscape of cancer research and cancer care in China

摘要

引言

癌症预防与早期检测

多学科团队(MDT)的发展

精准肿瘤学(precision oncology)的应用

新药研发

癌症药物研发的显著增长

靶向治疗和免疫治疗

双特异性抗体和抗体 - 药物偶联物

其他药物类别

细胞治疗发展的现状与未来

中国癌症研究的重点

研究者发起的试验(IIT)的作用

确保新药可及性

结论

肺癌(无AI)综述4 x  2023 Nature Reviews Clinical Oncology Immune-checkpoint inhibition for resectable non-small-cell lung cancer — opportunities and challenges

摘要

1. 引言

2. 免疫治疗的生物学原理

2.1 辅助治疗

2.2 新辅助治疗

2.3 围手术期治疗

3. 新辅助 ICIs

4. 新辅助和围手术期化疗免疫治疗

5. 辅助 ICIs

6. 挑战与争议

6.1 手术相关考虑因素

6.2 临床实践考虑因素:辅助与新辅助 ICIs

6.3 液体活检和其他生物标志物的作用

6.4 驱动基因阳性 NSCLC 的围手术期 ICIs

6.5 新辅助 ICIs 后辅助 ICIs 的最佳持续时间和可行性

6.6 终点的合理使用

6.7 复发后 ICI 再挑战

结论

综述5 2023 Biomedical Signal Processing and Control  Analysis based on machine and deep learning techniques for the accurate detection of lung nodules from ct images

 摘要

1. 引言

1.1 混合模型

2. 肺结节检测方法分类

2.1 卷积神经网络

2.2 基于元启发式的 CNN

2.3 规则方法

2.4 人工支持向量机神经网络

2.5 生成对抗网络

2.6 提升机分类器

2.7 深度神经网络

2.8 模糊模型

2.9 其他

2.10 特征提取

2.11 预处理

3. 分析与讨论

3.1 基于发表期刊的分析

3.2 发表年份分析

3.3 基于所评方法的性能分析

3.4 性能指标分析

3.5 与成果相关的性能

3.6 基于所评论文的数据集属性

3.7 基于纳入 / 排除标准的搜索过程的综述

4. 各种肺结节检测方法中的研究空白

4.1 数据集中方法的作用

4.2 基于深度学习模型的检测

4.3 基于各种方法的肺结节检测特征分类

5. 结论

综述4 2024 Archives of Computational Methods in Engineering  A bird’s eye view approach on the usage of deep learning methods in lung cancer detection and future directions using x-ray and ct images

2023 综述x Lung Cancer Diagnostic test accuracy of artificial intelligence-based imaging for lung cancer screening: A systematic review and meta-analysis

2023 综述x Artificial Intelligence in Medicine Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis 

2022 综述x Clinical eHealth Emerging artificial intelligence methods for fighting lung cancer: A survey

2023 综述短文x npj precision oncology Radiological artificial intelligence - predicting personalized immunotherapy outcomes in lung cancer

摘要

2024 综述x International Journal for Multidisciplinary Research The Promising Role of Artificial Intelligence in Navigating Lung Cancer Prognosis

摘要

1. 引言

1.1 肺癌定义与类型

1.2 流行病学与风险因素

2. 研究问题

3. 方法

3.1 纳入与排除标准

3.2 数据提取与统计

4. 当前诊断技术与治疗方式

4.1 肺癌诊断技术

4.2 肺癌治疗方式

5. AI 与 ML 在医疗保健中的作用

5.1 AI 与 ML 在肺癌检测和诊断中的作用

5.2 AI 与 ML 在肺癌管理中的应用

5.3 AI 在预后和结果预测中的作用

6. 人工智能用于肺癌的关键算法

6.1 卷积神经网络(CNNs)

6.2 支持向量机(SVM)

6.3 随机森林

6.4 自然语言处理(NLP)

6.5 强化学习

6.6 循环神经网络(RNNs)和长短期记忆网络(LSTMs)

6.7 生成对抗网络(GANs)

7. 跨学科整合

7.1 AI 与基因组学:个性化医疗方法

7.2 AI 与影像组学:先进成像技术

7.3 AI 与蛋白质组学:生物标志物发现与分析

8. 人工智能在机器学习中的挑战及其局限性

8.1 伦理考量

8.2 数据质量和可变性

8.3 可解释性和透明度

8.4 监管和伦理担忧

8.5 临床实践整合

9. 人工智能用于肺癌护理的未来应用和方向

9.1 预测分析和早期检测

9.2 增强成像技术

9.3 多组学数据整合

9.4 AI 驱动的药物研发

9.5 临床决策支持系统(CDSS)

9.6 远程监控和远程医疗

9.7 人工智能和机器学习算法创新

9.8 与其他技术融合

10. 结论

3、研究问题(报道)

肺癌免疫治疗面临的挑战和趋势

精准的适应性治疗是肺癌治疗的前进方向

创新药物未来研究方向在于新靶点的突破

精准诊疗及转化合作任重道远

4、参考


1、简介

最近在了解肺癌的研究进展,尤其是AI4肺癌(综述),调研结果如下

2、相关工作

综述1 2023 Seminars in Cancer Biology Artificial intellig

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值