基本上照抄的,学习一下扫描线的线段树
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll;
struct Line{
int x,y1,y2,flag;
};
/*********************************
* l-左子树节点 r-右子树节点
* num-子树中有多少条线段
* len-当前结点覆盖y方向的总长度
* cover-是否被覆盖 也就是入边+1,出边-1
* lb-左端点是否被覆盖 rb-右端点是否被覆盖
**********************************/
//每个节点表示的是该节点l对应的y值和r对应的y值之间的部分
struct Node {
int l,r,num,len,cover;
bool lb,rb;
};
Node node[20010];
Line l[10010];
int y[10010];
void add_line(int x1,int x2,int y1,int y2,int &cnt){
//入边
l[cnt].x=x1;
l[cnt].y1=y1;
l[cnt].y2=y2;
l[cnt].flag=1;
y[cnt++]=y1;
//出边
l[cnt].x=x2;
l[cnt].y1=y1;
l[cnt].y2=y2;
l[cnt].flag=-1;
y[cnt++]=y2;
}
//入边在前
int cmp(Line a,Line b){
if (a.x==b.x) return a.flag>b.flag;
return a.x<b.x;
}
void Build(int t,int l,int r){
node[t].l=l;
node[t].r=r;
node[t].num=0;
if (l==r-1) return;
int mid=(r+l)>>1;
Build(t*2,l,mid);
Build(t*2+1,mid,r);
}
void Update_len(int t){
//>0即该节点对应扫描线对应的两个y值被完全是覆盖了
if (node[t].cover>0) {
node[t].num=node[t].lb=node[t].rb=1;
node[t].len=y[node[t].r]-y[node[t].l];
}
//完全没被覆盖
else if(node[t].l==node[t].r-1) node[t].rb=node[t].lb=node[t].len=node[t].num=0;
//部分覆盖
else {
node[t].rb=node[2*t+1].rb;
node[t].lb=node[2*t].lb;
node[t].len=node[2*t].len+node[2*t+1].len;
node[t].num=node[2*t].num+node[2*t+1].num-node[2*t+1].lb*node[2*t].rb;
}
}
void Update(int t,Line p){
if (y[node[t].l]>=p.y1 &&y[node[t].r]<=p.y2 ){
node[t].cover+=p.flag;
Update_len(t);
return;
}
if (node[t].l==node[t].r-1) return;
int mid=(node[t].l+node[t].r)>>1;
if (p.y1<=y[mid]) Update(2*t,p);//中线下方
if (p.y2>y[mid]) Update(2*t+1,p);//中线上方
Update_len(t);
}
int solve(int n,int cnt,Line *l){
memset(node,0,sizeof(node));
Build(1,0,cnt-1);
int ans=0,lines=0,last=0;
for(int i=0;i<n;i++){
Update(1,l[i]);
if (i>0) ans+=2*lines*(l[i].x-l[i-1].x);//平等于x轴的长度
ans+=abs(node[1].len-last);
last=node[1].len;
lines=node[1].num;
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JDUGE
int n,x1,x2,y1,y2,cnt=0;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
add_line(x1,x2,y1,y2,cnt);
}
sort(y,y+cnt);
sort(l,l+cnt,cmp);
int t=cnt;
t=unique(y,y+cnt)-y;
int ans=solve(cnt,t,l);
printf("%d\n",ans);
return 0;
}