目录
求最大子段和
#include<bits/stdc++.h>
using namespace std;
int maxn(int a,int b){
return a>b?a:b;
}
int main(){
int ans=-999999,tmp,n,dp[200100]={0};//假装ans是负无穷
scanf("%d",&n);
for(i=1;i<=n;++i){
scanf("%d",&tmp);
dp[i]=maxn(dp[i-1]+tmp,tmp);
//printf("dp[%d]=%d\n",i,dp[i]);
ans=maxn(ans,dp[i]);//动态规划
//printf("ans=%d\n",ans);
}
printf("%d\n",ans);
return 0;
}
DP方程:dp[i]=max(dp[i-1]+tmp,tmp) tmp表示这个数列的第i项
求最大加权矩形
/*
4
0 -2 -7 0 a[1][1] a[1][2] a[1][3] a[1][4]
9 2 -6 2 a[2][1] a[2][2] a[2][3] a[2][4]
-4 1 -4 1
-1 8 0 -2
15
*/
#include <bits/stdc++.h>
using namespace std;
int maxn(int x,int y){
if(x>=y) return x;
else return y;
}
int main(){
int n,a,x,ans=0;
int sum[1000][1000];
int dp[100000]={0};
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%d",&sum[i][j]);
sum[i][j]+=sum[i-1][j];
}
}
for(int i=1;i<=n;i++){
for(int k=1;k<=i;k++){
for(int j=1;j<=n;j++){
a=sum[i][j]-sum[i-k][j];
dp[j]=maxn(dp[j-1]+a,a); //动态规划
ans=maxn(ans,dp[j]); //更新答案!!
}
}
}
printf("%d",ans);
return 0;
}
矩阵压缩:
假设有一个矩阵:
-5 6 4
1 -2 6
2 1 -3
如何对它进行压缩呢,把一行看做一个数,这里看做三个数a,b,c,那么将这三个相邻数的进行不同的组合,将这个新的组合视为一个新的数,这就是进行压缩处理,例如a,b,c可以组合为{[a],[ab],[abc],[b],[bc],[c]},而矩阵压缩也类似。
先设置一个变量max用于保存压缩后的一维数组的最大子序列和。
第一次取第一行:
-5 6 4
则其最大子序列和为10,max=10。
第二次取第一二行:
-5 6 4
1 -2 6
注意现在开始是矩阵压缩的精髓,将每一列的数进行相加,将多行变为一行。
第一列:-5+1=-4
第二列:6+(-2)=4
第三列:4+6=10
所以压缩后的一维数组为:
-4 4 10
则其最大子序列和为14,max=14。
第三次取第一二三行:
-5 6 4
1 -2 6
2 1 -3
对每一列进行压缩:
第一列:-5+1+2=-2
第二列:6+(-2)+1=5
第三列:4+6+(-3)=7
所以压缩后的一维数组为:
-2 5 7
则其最大子序列和为12,max=14。
第四次取第二行:
1 -2 6
则其最大子序列和为6,max=14。
第五次取第二三行:
1 -2 6
2 1 -3
对每一列进行压缩:
第一列:1+2=3
第二列:-2+1=-1
第三列:6+(-3)=3
所以压缩后的一维数组为:
3 -1 3
则其最大子序列和为5,max=14。
第六次取第三行:
2 1 -3
则其最大子序列和为3,max=14。
最后求得这个矩阵最大的子矩阵和为14
也就是第一二行的三四列
6 4
-2 6
矩阵压缩可以选择前缀和
就是在输入的时候,再次加上a[ i - 1 ][ j ],这样可以用减法来快速表示压缩的矩形。
scanf("%d",&n);
int i,j;
for(i=1;i<=n;++i){
for(j=1;j<=n;++j){
scanf("%d",&a[i][j]);
a[i][j]+=a[i-1][j];//根据前缀和定义处理
}
}
输入的是:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
在经过前缀和处理之后,输出的是:
0 -2 -7 0
9 0 -13 2
5 1 -17 3
4 9 -17 1
可以模拟一下,a[ i ][ j ] - a[ i - k ][ j ] 正好是以 i 为最下面一行,往上k行的压缩结果,这就很方便地表示了压缩后的矩形。
for(i=1;i<=n;++i){
for(k=1;k<=i;++k){
}
}
k<=i,保证了i-k>=0