求最大子段和,求最大加权矩形

目录

求最大子段和

求最大加权矩形


求最大子段和

#include<bits/stdc++.h>
using namespace std;
int maxn(int a,int b){

    return a>b?a:b;

}

int main(){
	int ans=-999999,tmp,n,dp[200100]={0};//假装ans是负无穷
	scanf("%d",&n);
	for(i=1;i<=n;++i){
		scanf("%d",&tmp);
		dp[i]=maxn(dp[i-1]+tmp,tmp);
		//printf("dp[%d]=%d\n",i,dp[i]); 
		ans=maxn(ans,dp[i]);//动态规划
		//printf("ans=%d\n",ans);
	}
	printf("%d\n",ans);
	return 0;
}

DP方程:dp[i]=max(dp[i-1]+tmp,tmp)    tmp表示这个数列的第i项

求最大加权矩形

/*
4
0 -2 -7 0       a[1][1] a[1][2] a[1][3] a[1][4]
9  2 -6 2       a[2][1] a[2][2] a[2][3] a[2][4]
-4 1 -4 1 
-1 8  0 -2

15
*/
#include <bits/stdc++.h>
using namespace std;
int maxn(int x,int y){
    if(x>=y) return x;
    else     return y;
}
int main(){
    int n,a,x,ans=0;
    int sum[1000][1000];
    int dp[100000]={0};
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            scanf("%d",&sum[i][j]);
            sum[i][j]+=sum[i-1][j];
        }
    }
    for(int i=1;i<=n;i++){
        for(int k=1;k<=i;k++){
            for(int j=1;j<=n;j++){
                a=sum[i][j]-sum[i-k][j];
                dp[j]=maxn(dp[j-1]+a,a);   //动态规划
		        ans=maxn(ans,dp[j]);   //更新答案!!
                
            }
        }
    }
    printf("%d",ans);
    return 0;  
}

矩阵压缩:

假设有一个矩阵:

-5 6 4

1 -2 6

2 1 -3

如何对它进行压缩呢,把一行看做一个数,这里看做三个数a,b,c,那么将这三个相邻数的进行不同的组合,将这个新的组合视为一个新的数,这就是进行压缩处理,例如a,b,c可以组合为{[a],[ab],[abc],[b],[bc],[c]},而矩阵压缩也类似。

先设置一个变量max用于保存压缩后的一维数组的最大子序列和。

第一次取第一行:

-5 6 4

则其最大子序列和为10,max=10。

第二次取第一二行:

-5 6 4

1 -2 6

注意现在开始是矩阵压缩的精髓,将每一列的数进行相加,将多行变为一行。

第一列:-5+1=-4

第二列:6+(-2)=4

第三列:4+6=10

所以压缩后的一维数组为:

-4 4 10

则其最大子序列和为14,max=14。

第三次取第一二三行:

-5 6 4

1 -2 6

2 1 -3

对每一列进行压缩:

第一列:-5+1+2=-2

第二列:6+(-2)+1=5

第三列:4+6+(-3)=7

所以压缩后的一维数组为:

-2 5 7

则其最大子序列和为12,max=14。

第四次取第二行:

1 -2 6

则其最大子序列和为6,max=14。

第五次取第二三行:

1 -2 6

2 1 -3

对每一列进行压缩:

第一列:1+2=3

第二列:-2+1=-1

第三列:6+(-3)=3

所以压缩后的一维数组为:

3 -1 3

则其最大子序列和为5,max=14。

第六次取第三行:

2 1 -3

则其最大子序列和为3,max=14。

最后求得这个矩阵最大的子矩阵和为14

也就是第一二行的三四列

6  4

-2 6

矩阵压缩可以选择前缀和

就是在输入的时候,再次加上a[ i - 1 ][ j ],这样可以用减法来快速表示压缩的矩形。

	scanf("%d",&n);
	int i,j;
	for(i=1;i<=n;++i){
		for(j=1;j<=n;++j){
			scanf("%d",&a[i][j]);
			a[i][j]+=a[i-1][j];//根据前缀和定义处理
		}
	}

输入的是:

	 0	-2	-7	 0
	 9	 2	-6	 2
	-4	 1	-4	 1 
	-1	 8	 0	-2

在经过前缀和处理之后,输出的是:

	0	-2	-7	 0
    9	 0	-13	2
    5	 1	-17	3
    4	 9	-17	1

可以模拟一下,a[ i ][ j ]  - a[ i - k ][ j ] 正好是以 i 为最下面一行,往上k行的压缩结果,这就很方便地表示了压缩后的矩形。

	for(i=1;i<=n;++i){
		for(k=1;k<=i;++k){
			
		}
	}

k<=i,保证了i-k>=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值