http://blog.csdn.net/theprinceofelf/article/details/7205813
(1)openMP的配置(windows平台+vs2010)。在Visul Studio中配置openMP十分简单,只需打开“项目 - > 属性 - > C/C++ - > 语言”中将“OpenMPI支持”选为"是" 如下图所示:
这样你就可以开始OpenMP之旅了。
(2)下面开始我们最简单的OpenMPI语句,hello world!
- #include "stdafx.h"
- #include <omp.h>
- #include <iostream>
- using namespace std;
- int main()
- {
- #pragma omp parallel num_threads(8)
- cout<<"hello world! "<<"thread numbers: "<<omp_get_thread_num()<<endl;
- }
(3)OpenMP的循环并行化
最基础和典型的并行部分应该就是循环,我们先从循环的并行开始
- #include "stdafx.h"
- #include <omp.h>
- #include <iostream>
- #include <time.h>
- using namespace std;
- const int core = 2;
- const int thread = 4;
- void test()
- {
- int sum = 0;
- for(int i=0; i<10000000; ++i)
- { sum *= i; }
- }
- int main()
- {
- clock_t start = clock();
- #pragma omp parallel for
- for(int i=0; i<core; i++)
- { test(); }
- clock_t finish = clock();
- cout<<"time used is: "<<finish -start<<"ms"<<endl;
- start = clock();
- for(int i=0; i<core; i++)
- { test(); }
- finish = clock();
- cout<<"time used is: "<<finish -start<<"ms"<<endl;
- }
这段代码中添加了运行时间测试语句,是为了比较并行处理的效果,并行指导语句只有一句#pragma omp parallel for,其作用就是将for循环的内部迭代使用多个线程处理。第二个循环是非并行的参照组,在我的机子上这两段代码的时间分别是35ms,65ms左右。
(3)OpenMPI的一般语句并行化
- #pragma omp parallel
- {
- /*并行区域1*/
- #pragma omp sections
- {
- #pragma omp section
- { cout<<"hello ->thread:"<<omp_get_thread_num()<<endl; }
- #pragma omp section
- { cout<<"hello ->thread:"<<omp_get_thread_num()<<endl; }
- }
- /*并行区域2*/
- #pragma omp sections
- {
- #pragma omp section
- { cout<<"world ->thread:"<<omp_get_thread_num()<<endl; }
- #pragma omp section
- { cout<<"world ->thread:"<<omp_get_thread_num()<<endl; }
- }
- };
使用#pragma omp parallel{ 语句 }的形式给出总的并行块,sections划分出并行分区,区域内部的section之间多线程并行处理,sections之间串行处理,如上述程序中,并行区域1先处理,并行区域2后处理;而并行区域1中的显示hello的两个section并行处理,并行区域2中显示world的两个section并行处理。
(4)OpenMP的并行调度算法
OpenMPI 的调度算法一共有三个:static , dynamic, guided. 另外有一个根据环境变量选择三者之一的runtime选项。使用方法也十分简单:
- sum =0;
- #pragma omp parallel for schedule(dynamic)
- for(int i=0; i<100; ++i)
- { sum +=i; }
- cout<<sum<<endl;
我们选择了 schedule(dynamic) ,同理有 schedule(static) 和 schedule(guided) ,另外你如果不给出schedule,那么默认选择的是static选项。三者的区别如下:
static : 每个线程分配 迭代总数 / 线程数 的迭代次数,如9500次迭代,10个线程,那么每个线程被分配950次迭代。任务分配可能不均衡。因为每次迭代的时间可能不同。
dynamic : 每次线程完成了当前工作就重新申请新的工作,开销比static大,但能基本保证任务分配的均衡。
guided : 程序员可以给出分配公式,指导任务的分配。
待续……