小记: 最开始读不懂题,然后看了下discuss里,原来是求判环,若没环则求森林里的树的最长直径(后来才知道一棵树里距离最远的两点的距离叫树的直径),看了之后,最开始想到了并查集判环,但是后面想不到如果求树的最长直径了,于是沉思良久,dfs可以做到.
思路:对于dfs的某一点,我们保存它两个数据,因为是一棵树,所以对于其中一个点,以它为起点,dfs的某两个终点,通过这个起点,这一条路径就是以该起点为根节点的树的最长直径, 这样dfs所有节点,最后得到的最长直径 就是answer了.搜i时,以i为根节点的树,我们相当于只要保存深搜以它为起点的路径中长度最长的前两个 即是以i为根节点的树的最长直径了.
代码:(len[i] 以i为根节点的树的最长直径,leni[i] 以i为根节点且也以i为起点的最长深搜路径)
#pragma comment(linker, "/STACK:102400000,102400000")
//上面这一句 在HDU交C++的话 要加上去, 交GNU++的话 可以不用
#include <string.h>
#include <stdio.h>
#define MAX_ 100010
#define MAX 1000010
#define MIN -0xfffffff
struct point {
int v,cap,next;
} edge[MAX*2];
int head[MAX_];
bool vis[MAX_];
int len[MAX_], leni[MAX_];
int ans, M;
void add(int from, int to ,int cap) {
//edge[M].u = from;
edge[M].v = to;
edge[M].cap = cap;
edge[M].next = head[from];
head[from] = M++;
//edge[M].u = to;
edge[M].v = from;
edge[M].cap = cap;
edge[M].next = head[to];
head[to] = M++;
}
bool dfs0(int u,int pre){
int v;
vis[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].next){
v = edge[i].v;
if(v == pre)continue;
if(vis[v] || !dfs0(v,u) )return 0;
}
return 1;
}
void dfs(int k, int pre) {
int i, v, tmp;
leni[k] = len[k] = 0;
vis[k] = 0;
for(i = head[k]; i != -1; i = edge[i].next) {
v = edge[i].v;
if(pre == v)continue;
dfs(v,k);
tmp = leni[v] + edge[i].cap + leni[k];
if(tmp > len[k]){
len[k] = tmp;
}
if(leni[v] + edge[i].cap > leni[k]){
leni[k] = leni[v] + edge[i].cap;
}
}
if(len[k] > ans)ans = len[k];
}
int main() {
int m, i, n;
int s,t,c;
while(~scanf("%d%d",&m,&n)) {
M = 0;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
for(i = 0; i < n; i++) {
scanf("%d%d%d",&s,&t,&c);
add(s,t,c);
}
for(i = 1; i <= m; i++) {
if(!vis[i]&&!dfs0(i,-1))break;
}
if(i <= m){
printf("YES\n");
}
else {
ans = 0;
for(i = 1; i <= m; ++i){
if(vis[i]){
dfs(i,-1);
}
}
printf("%d\n",ans);
}
}
return 0;
}