1.线性回归损失函数的极大似然推导
2.一元线性回归的参数求解公式推导
公式3.7和3.8
3.多元线性回归的参数求解公式推导
公式3.10
公式3.11
4.线性回归损失函数的最优化算法:什么是批量梯度下降、随机梯度下降、小批量梯度下降?
在最小化损失函数的过程中,可以用梯度下降法。
损失函数为:
对目标函数进行求导,导数如下:
利用梯度下降更新参数,参数更新方式如下:
批量梯度下降法: 在利用上述公式更新参数时使用所有的样本,即m为所有样本个数。
随机梯度下降法:更新每一参数时都使用一个样本来进行更新,即随机选取一个样本,上述公式中m=1
小批量梯度下降法: 它的具体思路是在更新每一参数时都使用一部分样本来进行更新,也就是上述更新参数公式中的m的值大于1但小于所有样本的数量。