基础算法梳理任务1

 

1.线性回归损失函数的极大似然推导

2.一元线性回归的参数求解公式推导

公式3.7和3.8

3.多元线性回归的参数求解公式推导

公式3.10

 

公式3.11

4.线性回归损失函数的最优化算法:什么是批量梯度下降、随机梯度下降、小批量梯度下降?

在最小化损失函数的过程中,可以用梯度下降法。

损失函数为:

对目标函数进行求导,导数如下:

 

利用梯度下降更新参数,参数更新方式如下:

批量梯度下降法:  在利用上述公式更新参数时使用所有的样本,即m为所有样本个数。

随机梯度下降法:更新每一参数时都使用一个样本来进行更新,即随机选取一个样本,上述公式中m=1

小批量梯度下降法:   它的具体思路是在更新每一参数时都使用一部分样本来进行更新,也就是上述更新参数公式中的m的值大于1但小于所有样本的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值