星月夜语
探索深度学习、计算机视觉的世界,务实中上下而求索。
展开
-
【图像复原MWCNN】Multi-level Wavelet-CNN for Image Restoration
论文:P. Liu, H. Zhang, K. Zhang, Multi-level Wavelet-CNN for Image Restoration, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, Salt Lake City, UT, 2018: pp. 关键词:卷积神经网络, 小波变换,图像复原 代码:https://github.com/lpj...原创 2022-06-26 08:38:01 · 1176 阅读 · 0 评论 -
【压缩感知 SDA】A Deep Learning Approach to Structured Signal Recovery
论文: A. Mousavi, A. B. Patel and R. G. Baraniuk, "A deep learning approach to structured signal recovery," 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp. 1336-1343 关键词:stacked denoising autoencoder ....原创 2022-06-26 08:51:23 · 454 阅读 · 0 评论 -
【压缩感知】Convolutional Neural Networks for Non-iterative Reconstruction of Compressively Sensed Images
论文:S. Lohit, K. Kulkarni, R. Kerviche, et al, Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images, IEEE Trans. Comput. Imaging. 4 (2018) 326–340.关键词:压缩感知,卷积神经网络,GAN网络原创 2022-06-22 13:16:19 · 956 阅读 · 0 评论 -
【图像压缩感知】DEEP NETWORKS FOR COMPRESSED IMAGE SENSING(CVPR)
论文脉络: “Reconnet: Non-iterative reconstruction of images from compressively sensed measurements,” in IEEE Conf. Comp. Vision and Pattern Recog (CVPR), June 2016.关键词:Compressed sensing, deep networks原创 2022-06-21 17:59:19 · 947 阅读 · 0 评论 -
【图像压缩感知】Learned D-AMP: Principled Neural Network Based Compressive Image Recovery
论文:Learned D-AMP: Principled Neural Network Based Compressive Image Recovery,NIPS, 2017. 关键词:Compressive image recovery,neural networks, unrolled, denoising-based approximate message passing (D-AMP) 核心脉络梳理。原创 2022-06-21 17:50:40 · 287 阅读 · 0 评论 -
【压缩感知-基于块自适应】Multi-Channel Deep Networks for Block-Based Image Compressive Sensing
作者通过利用块间的相关性提出了一个多通道的深度网络来解决基于块的图像压缩感知问题。采用不同采样率的图像块可以使用一个模型进行图像重建。原创 2022-06-21 15:59:44 · 446 阅读 · 0 评论 -
IEEE ACCESS
1、表格和图标标题没有了蓝色首先是不能添加\caption这个包,添加了之后原来access的模板中FIGURE 1 字样是蓝色加粗会变成黑色字体:代码如下:\usepackage{cite}\usepackage{amsmath,amssymb,amsfonts}\usepackage{algorithmic}\usepackage{graphicx}\usepackage[caption=false]{subfig}\usepackage{caption,setspace}..原创 2020-12-21 18:35:46 · 2453 阅读 · 0 评论 -
【图像质量评价】No-reference Image Quality Assessment with Deep Convolutional Neural Networks - 2016 ---3区
直接引用:1、P2:“[15] demonstrated that in a deep CNN that ReLUs enable the network to trainseveral times faster compared to using tanh units.”2、P2: “The convolution filter in CNN is a Generalized Linear Model (GLM) for the underlying data patch. In [16],原创 2020-10-27 19:02:33 · 219 阅读 · 0 评论 -
【图像质量评价】Convolutional Neural Networks for No-Reference Image Quality Assessment ---2014
卷积神经网络——无参考图像质量评价论文原创 2020-10-27 19:01:43 · 180 阅读 · 0 评论 -
【图像质量评价】Toward Content Independent No-reference Image Quality Assessment Using Deep Learning --2019
Toward Content Independent No-reference Image Quality Assessment Using Deep Learning原创 2020-10-27 19:00:45 · 138 阅读 · 0 评论 -
计算机会议排名
附件是计算机领域的学术会议等级排名情况,分为A+, A, B, C, L 共5个档次。其中A+属于顶级会议,基本是这个领域全世界大牛们参与和关注最多的会议。国内的研究者能在其中发表论文的话,是很值得骄傲的成就。A类也是非常好的会议了,尤其是一些热门的研究方向,A类的会议投稿多录用率低,部分A类会议影响力逐步逼近A+类会议。B类的会议分两种,一种称为盛会级,参与的人多,发表的论文也多,论文录用难...转载 2020-04-20 11:22:42 · 1749 阅读 · 0 评论