深度学习
环环jiayou
任道而重远,但志在必得!!!
展开
-
stacked CNN深度卷积网络的简单介绍
首先需要知道的是,convolution和pooling的优势为使网络结构中所需学习到的参数个数变得更少,并且学习到的特征具有一些不变性,比如说平移,旋转不变性。以2维图像提取为例,学习的参数个数变少是因为不需要用整张图片的像素来输入到网络,而只需学习其中一部分patch。而不变的特性则是由于采用了mean-pooling或者max-pooling等方法。转载 2014-08-05 10:33:41 · 1463 阅读 · 0 评论 -
Deep Learning部分函数用法
squeeze(4,1,3);翻译 2014-08-05 11:18:10 · 680 阅读 · 0 评论 -
CNN toolbox
function net = cnnsetup(net, x, y) inputmaps = 1; %输入原始图像; mapsize = size(squeeze(x(:, :, 1)));%图像的存放方式是三维的reshape(train_x',28,28,60000),前面两维表示 %图像的行与列,第三维就表示有多少个图像。这样squeeze(x(:, :, 1))就相转载 2014-08-10 19:36:20 · 1483 阅读 · 2 评论