二叉树创建及遍历算法(递归及非递归)

原创 2007年10月12日 19:08:00

 

//二叉树处理头文件
//包括二叉树的结构定义,二叉树的创建,遍历算法(递归及非递归),
/*
 作者:成晓旭
 时间:2001年10月7日(18:49:38-20:00:00)
 内容:完成二叉树创建,二叉树的前,中,后序遍历(递归)
 时间:2001年10月7日(21:09:38-22:09:00)
 内容:完成二叉树的前,中序遍历(非递归)
 时间:2001年10月8日(10:09:38-11:29:00)
 内容:完成查找二叉树的静,动态查找(非递归)
*/
#include "stdlib.h"

#define MAXNODE 20
#define ISIZE 8
#define NSIZE0 7
#define NSIZE1 8
#define NSIZE2 15
//SHOWCHAR = 1(显示字符) SHOWCHAR = 0(显示数字)
#define SHOWCHAR 1
//二叉树结构体
struct BTNode
{
 int data;
 BTNode *rchild;
 BTNode *lchild;
};
//非递归二叉树遍堆栈
struct ABTStack
{
 BTNode *ptree;
 ABTStack *link;
};
char TreeNodeS[NSIZE0] = {'A','B','C','D','E','F','G'};
char PreNode[NSIZE0] = {'A','B','D','E','C','F','G'};
char MidNode[NSIZE0] = {'D','B','E','A','C','G','F'};
int TreeNodeN0[NSIZE1][2] = {{0,0},{1,1},{2,2},{3,3},{4,4},{5,5},{6,6},{7,7}};
int TreeNodeN1[NSIZE1][2] = {{0,0},{4,1},{2,2},{6,3},{1,4},{3,5},{5,6},{7,7}};
int TreeNode0[NSIZE1][2] = {{'0',0},{'D',1},{'B',2},{'F',3},{'A',4},{'C',5},{'E',6},{'G',7}};
int TreeNode1[NSIZE1][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7}};
int TreeNode2[NSIZE2][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7},{'H',8},{'I',9},{'J',10},{'K',11},{'L',12},{'M',13},{'N',14}};
int InsertNode[ISIZE] = {-10,-8,-5,-1,0,12,14,16};
//char *prestr = "ABDECFG";
//char *midstr = "DBEACGF";
/*
 二叉树创建函数dCreateBranchTree1()<递归算法>
 参数描述:
  int array[]: 二叉树节点数据域数组
  int i:   当前节点的序号
  int n:   二叉树节点个数
 返回值:
  dCreateBranchTree1 = 新建二叉树的根节点指针
 备注:
  根节点 = array[(i+j)/2];
  左子节点 = [array[i],array[(i+j)2-1]]
  右子节点 = [array[(i+j)/2+1,array[j]]
*/
BTNode *dCreateBranchTree1(char array[],int i,int n)
{
 BTNode *p; /*二叉树节点*/
 if(i>=n)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = array[i];
 p->lchild = dCreateBranchTree1(array,2*i+1,n);
 p->rchild = dCreateBranchTree1(array,2*i+2,n);
 return(p);
}
/*
 二叉树创建函数dCreateBranchTree2()<递归算法>
 参数描述:
  int array[]: 二叉树节点数据域数组
  int i:   当前节点的序号
  int n:   二叉树节点个数
 返回值:
  dCreateBranchTree2 = 新建二叉树的根节点指针
 备注:
  根节点 = array[(i+j)/2];
  左子节点 = [array[i],array[(i+j)2-1]]
  右子节点 = [array[(i+j)/2+1,array[j]]
*/
BTNode *dCreateBranchTree2(char array[],int i,int j)
{
 BTNode *p; /*二叉树节点*/
 if(i>j)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = array[(i+j)/2];
 p->lchild = dCreateBranchTree2(array,i,(i+j)/2-1);
 p->rchild = dCreateBranchTree2(array,(i+j)/2+1,j);
 return(p);
}
/*
 二叉树创建函数dCreateBranchTree3()<非递归算法>
 已知二叉树的前,中序遍历序列串,构造对应的二叉树
 <编程思想>:
  首先,在前序遍历序列中的首元素是二叉树的根节点,接着
 ,在中序遍历序列中找到此节点,那么在此节点以前的节点必为
 其左孩子节点,以后的必为其右孩子节点;
  然后,在中序遍历序列中,根节点的左子树和右子树再分别
 对应子树前序遍历序列的首字符确定子树的根节点,再由中序
 遍历序列中根节点的位置分别确定构成它们的左子树和右子树
 的节点;
  依次类推,确定二叉树的全部节点,构造出二叉树.
 参数描述:
  char *pre:  前序遍历序列
  char *mid:  中序遍历序列
  int n:   遍历序列中节点个数
 返回值:
  dCreateBranchTree3 = 新建二叉树的根节点指针
*/
BTNode *dCreateBranchTree3(char *pre,char *mid,int n)
{
 BTNode *p;
 char *t;
 int left;
 if(n<=0)
  return(NULL);
 p = (BTNode *)malloc(sizeof(BTNode));
 p->data = *pre;
 for(t=mid;t<mid+n;t++)
  if(*t==*pre) break;  /*在中序遍历序列中查找根节点*/
 left = t - mid;  /*左子树的节点个数*/
 p->lchild = dCreateBranchTree3(pre+1,t,left);
 p->rchild = dCreateBranchTree3(pre+1+left,t+1,n-1-left);
 return(p);
}
/*
 二叉树创建函数CreateBranchTree()<非递归算法>
 参数描述:
  int array[]: 二叉树节点数据域数组
  int n:   二叉树节点个数
 返回值:
  CreateBranchTree = 新建二叉树的根节点指针
*/
BTNode *CreateBranchTree(int array[][2],int n)
{
 BTNode *head,*p;
 BTNode *NodeAddr[MAXNODE]; //节点地址临时缓冲区
 int i,norder,rorder;
 head = NULL;
 printf("二叉树原始数据<新建顺序>:/t");
 for(i=1;i<=n;i++)
 {
  p = (BTNode *)malloc(sizeof(BTNode));
  if(p==NULL)
  {
   printf("/n新建节点时内存溢出!/n");
   return(NULL);
  }
  else
  {
   p->data = array[i][0];
   p->lchild = p->rchild = NULL;
   norder = array[i][1];
   NodeAddr[norder] = p;
   if(norder>1)
   {
    rorder = norder / 2; /*非根节点:挂接在自己的父节点上*/
    if(norder % 2 == 0)
     NodeAddr[rorder]->lchild = p;
    else
     NodeAddr[rorder]->rchild = p;
   }
   else
    head = p; /*根节点*/
   if(SHOWCHAR)
    printf("%c    ",p->data);
   else
    printf("%d    ",p->data);
  }
 }
 return(head);
}
//------------------------------递归部分------------------------------
/*
 二叉树前序遍历函数dpre_Order_Access()<递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针  
*/
void dpre_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
  dpre_Order_Access(head->lchild); /*递归遍历左子树*/
  dpre_Order_Access(head->rchild); /*递归遍历右子树*/
 }
}
/*
 二叉树中序遍历函数dmid_Order_Access()<递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针  
*/
void dmid_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  dmid_Order_Access(head->lchild); /*递归遍历左子树*/
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
  dmid_Order_Access(head->rchild); /*递归遍历右子树*/
 }
}
/*
 二叉树后序遍历函数dlast_Order_Access()<递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针  
*/
void dlast_Order_Access(BTNode *head)
{
 if(head!=NULL)
 {
  dlast_Order_Access(head->lchild); /*递归遍历左子树*/
  dlast_Order_Access(head->rchild); /*递归遍历右子树*/
  if(SHOWCHAR)
   printf("%c    ",head->data);
  else
   printf("%d    ",head->data);
 }
}
//------------------------------递归部分------------------------------
//------------------------------非递归部分------------------------------
/*
 二叉树前序遍历函数pre_Order_Access()<非递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针  
*/
void pre_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 pt = head;
 top = NULL;
 printf("/n二叉树的前序遍历结果<非递归>:/t");
 while(pt!=NULL ||top!=NULL)  /*二叉树未遍历完,或堆栈非空*/
 {
  while(pt!=NULL)
  {
   if(SHOWCHAR)
    printf("%c    ",pt->data);  /*访问根节点*/
   else
    printf("%d    ",pt->data);  /*访问根节点*/
   ps = (ABTStack *)malloc(sizeof(ABTStack));  /*根节点进栈*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*遍历节点右子树,经过的节点依次进栈*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*栈顶节点出栈*/
   ps = top;
   top = top->link;
   free(ps); /*释放栈顶节点空间*/
   pt = pt->rchild; /*遍历节点右子树*/
  }
 }
}
/*
 二叉树中序遍历函数mid_Order_Access()<非递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针 
*/
void mid_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 int counter =1;
 pt = head;
 top = NULL;
 printf("/n二叉树的中序遍历结果<非递归>:/t");
 while(pt!=NULL ||top!=NULL)  /*二叉树未遍历完,或堆栈非空*/
 {
  while(pt!=NULL)
  {  
   ps = (ABTStack *)malloc(sizeof(ABTStack)); /*根节点进栈*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*遍历节点右子树,经过的节点依次进栈*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*栈顶节点出栈*/
   ps = top;
   top = top->link;
   free(ps); /*释放栈顶节点空间*/
   if(SHOWCHAR)
    printf("%c    ",pt->data); /*访问根节点*/
   else
    printf("%d    ",pt->data); /*访问根节点*/
   pt = pt->rchild; /*遍历节点右子树*/
  }
 }
}
/*
 二叉树后序遍历函数last_Order_Access()<非递归算法>
 参数描述:
  BTNode *head: 二叉树的根节点指针  
*/
void last_Order_Access(BTNode *head)
{
 BTNode *pt;
 ABTStack *ps,*top;
 int counter =1;
 pt = head;
 top = NULL;
 printf("/n二叉树的后序遍历结果<非递归>:/t");
 while(pt!=NULL ||top!=NULL)  /*二叉树未遍历完,或堆栈非空*/
 {
  while(pt!=NULL)
  {  
   ps = (ABTStack *)malloc(sizeof(ABTStack)); /*根节点进栈*/
   ps->ptree = pt;
   ps->link = top;
   top = ps;
   pt = pt->lchild; /*遍历节点右子树,经过的节点依次进栈*/
  }
  if(top!=NULL)
  {
   pt = top->ptree; /*栈顶节点出栈*/
   ps = top;
   top = top->link;
   free(ps); /*释放栈顶节点空间*/
   printf("%c    ",pt->data); /*访问根节点*/
   pt = pt->rchild; /*遍历节点右子树*/
  }
 }
}
/*
 二叉查找树静态查找函数static_Search_STree()<非递归算法>
 参数描述:
  BTNode *head: 二叉查找树的根节点指针
  int key:  查找关键码
 返回值:
  static_Search_STree = 键值为key的节点指针(找到) 
  static_Search_STree = NULL(没有找到)
*/
BTNode *static_Search_STree(BTNode *head,int key)
{
 while(head!=NULL)
 {
  if(head->data == key)
  {
   printf("/n数据域=%d/t地址=%d/t/n",head->data,head);
   return(head); /*找到*/
  }
  if(head->data > key)
   head = head->lchild; /*继续沿左子树搜索*/
  else
   head = head->rchild; /*继续沿右子树搜索*/
 }
 return(NULL); /*没有查找*/
}
/*
 二叉查找树动态查找函数dynamic_Search_STree()<非递归算法>
 参数描述:
  BTNode *head:  二叉查找树的根节点指针
  BTNode **parent: 键值为key的节点的父节点指针的指针
  BTNode **head:  键值为key的节点指针的指针(找到)或NULL(没有找到)
  int key:   查找关键码
 注意:
  *parent == NULL 且 *p == NULL 没有找到(二叉树为空)
  *parent == NULL 且 *p != NULL 找到(找到根节点)
  *parent != NULL 且 *p == NULL 没有找到(叶节点)<可在parent后插入节点>
  *parent != NULL 且 *p != NULL 找到(中间层节点)
*/
void dynamic_Search_STree(BTNode *head,BTNode **parent,BTNode **p,int key)
{
 *parent = NULL;
 *p = head;
 while(*p!=NULL)
 {
  if((*p)->data == key)
   return; /*找到*/
  *parent = *p; /*以当前节点为父,继续查找*/
  if((*p)->data > key)
   *p = (*p)->lchild; /*继续沿左子树搜索*/
  else
   *p = (*p)->rchild; /*继续沿右子树搜索*/
 }
}
/*
 二叉查找树插入节点函数Insert_Node_STree()<非递归算法>
 参数描述:
  BTNode *head: 二叉查找树的根节点指针
  int key:  查找关键码
 返回值:
  Insert_Node_STree = 1 插入成功
  Insert_Node_STree = 0 插入失败(节点已经存在)
*/
int Insert_Node_STree(BTNode *head,int key)
{
 BTNode *p,*q,*nnode;
 dynamic_Search_STree(head,&p,&q,key);
 if(q!=NULL)
  return(0);  /*节点在树中已经存在*/
 nnode = (BTNode *)malloc(sizeof(BTNode)); /*新建节点*/
 nnode->data = key;
 nnode->lchild = nnode->rchild = NULL;
 if(p==NULL)
  head = p; /*原树为空,新建节点为查找树*/
 else
 {
  if(p->data > key)
   p->lchild = nnode; /*作为左孩子节点*/
  else
   p->rchild = nnode; /*作为右孩子节点*/
 }
 return(1); /*插入成功*/
}
/*
 二叉查找树插入一批节点函数Insert_Batch_Node_STree()<非递归算法>
 参数描述:
  BTNode *head: 二叉查找树的根节点指针
  int array[]: 被插入的数据域数组
  int n:   被插入的节点数目
*/
void Insert_Batch_Node_STree(BTNode *head,int array[],int n)
{
 int i;
 for(i=0;i<n;i++)
 {
  if(!Insert_Node_STree(head,array[i]))
   printf("/n插入失败<键值为%d的节点已经存在>!/n",array[i]); 
 }
}
//------------------------------非递归部分------------------------------
 

 

数据结构JAVA版2017教学视频课程

-
  • 1970年01月01日 08:00

C++递归创建、非递归遍历二叉树的基本操作

最近学了二叉树,这个数据结构和它的名字一样,真是二叉。如果单纯的让我想这样的算法,以笔者的脑子想一辈子都想不出来。二叉树刚学完,老师又讲了图。 俗话说,不能在一棵树上吊死,那我选择在二叉树上吊死。关键...
  • wufeifan_learner
  • wufeifan_learner
  • 2017-10-22 16:22:38
  • 652

二叉树遍历的递归、非递归算法(Java实现)

二叉树先序遍历、中序遍历、后序遍历的递归以及非递归算法(Java实现)
  • apandi_
  • apandi_
  • 2016-10-24 22:35:48
  • 2618

【数据结构与算法】二叉树递归与非递归遍历(附完整源码)

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有前、中、后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但...
  • mmc_maodun
  • mmc_maodun
  • 2013-10-24 08:58:03
  • 41856

二叉树几种遍历算法的非递归实现

二叉树遍历的非递归实现 相对于递归遍历二叉树,非递归遍历显得复杂了许多,但换来的好处是算法的时间效率有了提高。下面对于我学习非递归遍历二叉树算法的过程进行总结为了便于理解,这里以下图的二叉树为例,分析...
  • kelvinmao
  • kelvinmao
  • 2016-05-15 11:43:32
  • 6209

二叉树的操作 深度广度遍历,二叉树递归和非递归遍历

二叉树的操作 参考:[1]http://www.cnblogs.com/dolphin0520/archive/2011/08/25/2153720.html     [2]http://...
  • lishenglong666
  • lishenglong666
  • 2016-05-29 21:45:34
  • 509

二叉树的建立、三种(递归、非递归)遍历方法

二叉树定义: 1.有且仅有一个特定的称之为根root的结点 2.当n>1时,除根结点之外的其余结点分为两个互不相交的子集。他们称为二叉树的左子树和右子树。 二叉树的一种建立方法: 若对有n个结...
  • jiang111_111shan
  • jiang111_111shan
  • 2015-06-08 21:42:24
  • 1068

二叉树前序遍历的递归与非递归算法

前几天参加了阿里暑期实习的内推面试,发现自己的数据结构算法基础特别薄弱,比如其中一个问题是中序遍历的递归与非递归算法,我平时看数据结构只知道递归算法,非递归的算法直接被问懵逼了,在思考了几十秒之后想出...
  • StarsionBlog
  • StarsionBlog
  • 2017-03-08 21:08:32
  • 2376

二叉树的四种遍历的递归和非递归的实现

二叉树的三种遍历为:前序遍历,中序遍历和后序遍历。 遍历的实现可分为递归和非递归。递归法与二叉树的定义相似,非递归法采用栈去模拟实现。 一、前序遍历的次序为:根结点——左结点——右结点。 递归法实现:...
  • xiaominkong123
  • xiaominkong123
  • 2016-06-02 16:50:17
  • 1548
收藏助手
不良信息举报
您举报文章:二叉树创建及遍历算法(递归及非递归)
举报原因:
原因补充:

(最多只允许输入30个字)