无参数注意力机制(PfAAM),在yolov5中的使用

PfAAM是最近刚提出的一种无参注意力机制,结合通道注意力和空间注意力,一起学习一下

论文地址:https://arxiv.org/abs/2210.07828

代码地址:https://github.com/nkoerb/pfaam

原理

原理很简单,就是将原特征图分两次进行平均池化,一种相当于通道注意力,另一种是空间注意力。然后将它们拉伸成原特征图的大小,最后,两特征图相乘并作用于原特征图

代码

官方给的github上的pytorch源码运行有一点问题,我稍微修改了一下,亲测可以运行

class PfAAMLayer(nn.Module):
    def __init__(self, c1, c2, ratio=16):
        super(PfAAMLayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.sigmoid = nn.Sigmoid()
        
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c, 1, 1).expand_as(x)
        z = torch.mean(x, dim=1, keepdim=True).expand_as(x)
        return x * self.sigmoid(y*z)

 在YOLOv5中的使用

 首先,将上面的代码添加到common.py文件中

 其次,在yolo.py中注册PfAAMlayer类,具体做法是在perse_model函数中加入PfAAMlayer,如下图

 最后,在网络结构中添加注意力层,下面是一种改进方法,我把注意力机制放在最后一层

PS:注意力机制作为一种即插即用的模块,理论上可以放在任何位置,要注意层数和通道数

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1,1, PfAAMLayer,[1024]],    #<<<---注意力机制

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值