在一条环路上有 N 个加油站,其中第 i 个加油站有汽油gas[i]
,并且从第_i_个加油站前往第_i_+1个加油站需要消耗汽油cost[i]
。
你有一辆油箱容量无限大的汽车,现在要从某一个加油站出发绕环路一周,一开始油箱为空。
求可环绕环路一周时出发的加油站的编号,若不存在环绕一周的方案,则返回-1
。
样例
现在有4个加油站,汽油量gas[i]=[1, 1, 3, 1]
,环路旅行时消耗的汽油量cost[i]=[2, 2, 1, 1]
。则出发的加油站的编号为2。
注意
数据保证答案唯一。
挑战
O(n)时间和O(1)额外空间
class Solution {
public:
int canCompleteCircuit(vector<int> &gas, vector<int> &cost) {
if(gas.empty()||cost.empty())
return 0;
int n=cost.size();
int begin=0; //假设从第零个加油站开始走
int cur=0; //当前储油量
int Gas=0,Cost=0; //Gas记录汽油总量,Cost记录着走完环路的消耗总量
for(int i=0;i<n;++i){
cur+=gas[i]; //加满油
cur-=cost[i]; //走到下一站的花费
Gas +=gas[i];
Cost+=cost[i];
if(cur<0){ //从当前加油站走不到下一站
begin=i+1; //替换出发点,其实就是一个一个试!!!从1到n
cur=0; //重新计算
}
}
return Gas>=Cost?begin:-1; //如果花费总量大于汽油总量肯定走不完了,否则就返回起始点
}
};