P1169 棋盘制作

博客介绍了洛谷P1169题目中棋盘制作问题的优化解法,从原始的六次方时间复杂度降低到五次方及四次方。通过设置s[x][y]表示能往上走的位置数量,以及使用s1[x][y]记录横向的最大值。还讨论了寻找数组最小值的技巧,并给出了相关程序实现。此外,借鉴P4147题解,利用l[i][j]、r[i][j]、L[i][j]、R[i][j]和H[i][j]来求解最大矩形问题,优化求解矩形面积的方法。
摘要由CSDN通过智能技术生成

这里是题干:https://www.luogu.org/problemnew/show/P1169

这是什么优化都没有的。。。六次方,爽的一批~~~

#include<iostream>
using namespace std;
int n,m,a[2100][2100],f[100][100][100][100];

bool judge(int i,int j,int x,int y)
{
    for(int k=i;k<=x;++k){
        for(int l=j;l<=y;++l){
            if(((k-i)%2==0&&(l-j)%2==0)||((k-i)%2==1&&(l-j)%2==1)){
                if(a[k][l]!=a[i][j])
                    return false;
            }
            if(((k-i)%2==0&&(l-j)%2==1)||((k-i)%2==1&&(l-j)%2==0)){
                if(a[k][l]==a[i][j])
                    return false;
            }
        }
    }
    return true;
}

void prepare()
{
    for(int i=1;i<=n;++i){
        for(int j=1;j<=m;++j){
            for(int x=i;x<=n;++x){
                for(int y=j;y<=m;++y){
                    if(judge(i,j,x,y)){
                        f[i][j][x][y]=(x-i+1)*(y-j+1);
                    }
                }
            }
        }
    }
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;++i){
        for(int j=1;j<=m;++j){
            cin>>a[i][j];
        }
    }
    prepare();
    int ans1=0,ans2=0;
    for(int i=1;i<=n;++i){
        for(int j=1;j<=m;++j){
            for(int x=i;x<=n;++x){
                for(in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值