配对堆(Pairing Heap)

配对堆(Pairing Heap)是一个简单实用的min-heap结构(当然也可以做成max-heap)。它是一颗多路树(multiway tree),类似于Leftist Heap和Skew Heap,但是与Binomial Tree和Fibonacci Heap不一样。它的基本操作是两个多路树的连接(link),所以取名叫Pairing Heap。连接操作(参考以下实现中的方法linkPair)类似于Binomial Tree和Fibonacci Heap中的link操作,即将root key值最大的树作为key值最小的树的孩子(一般作为最左边的孩子,特别是Binomial Heap必须这样做),其复杂度是常数级。因为Pairing Heap只有一棵树,所以它的merge操作(类似于Fibonacci Heap中的union)也很简单,只需要link两棵树就可以了,平摊复杂度与Fibonacci Heap类似,都是常数级操作,而在Binomial Heap中需要union两个root lists,所以复杂度为O(logn)。在算法分析中,往往有很多数据结构实现起来比较简单,但是分析起来很复杂,例如快速排序(Quicksort),配对堆也是一个典型例子。配对堆的merge,insert和findMin的平摊复杂度都是O(1),extract-min的平摊复杂度是O(logn),这与Fibonacci Heap中的相应操作的复杂度相当。但是,decrease-key的平摊复杂度比Fibonacci Heap大,后者的decrease-key的平摊复杂度是O(1)。关于配对堆的decrease-key操作的平摊复杂度结果可以参考:http://en.wikipedia.org/wiki/Pairing_heap。

在以下实现中,Pairing Heap采用“leftmost child,right sibling”(左孩子,右兄弟)方式表示,而且每一个结点还有一个left属性:对于第一个孩子,left属性表示该孩子的父结点;对于其他结点,left属性表示该结点的左兄弟。Extract-Min操作比较有意思,首先采用类似Binomial Heap和Fibonacci Heap中做法,即先删除root结点,然后得到root的孩子结点双向链表,链表中每一个结点对应一个子堆(subheap);接下来考虑如何将子堆合并到原来的堆中,在这里可以比较一下二项堆,Fibonacci堆和配对堆的合并做法:在Binomial Heap中将孩子结点倒排,生成按degree从小到大顺序的单向链表,然后将该单链表跟原来剩余的堆结点root list链表作union操作。在Fibonacci Heap中的做法是,将孩子结点依次添加到root list中(不用考虑先后次序),然后通过consolidate生成degree唯一的双向循环链表。二者都是在Extract-min时让每个堆结构变得更加紧凑,恢复成理想的状态,同时Extract-min的操作成本也相对比较高。在Pairing Heap中做法类似:如果没有Extract-min操作,其他的操作(比如insert,merge,decrease-key)势必使得root结点的孩子链表变得很长,通过Extract-Min两两合并,让Pairing Heap变得更加有序。Extract-Min两两合并做法是:先从左到右将相邻的孩子结点两两link,生成一个缩减的双向链表,然后对该新的双向链表从右到左link(上一次合并的结果作为下一次link中的右兄弟结点)。


实现:

/**
 * 
 * Pairing Heap   
 *  
 * Copyright (c) 2011 ljs (http://blog.csdn.net/ljsspace/)
 * Licensed under GPL (http://www.opensource.org/licenses/gpl-license.php) 
 * 
 * @author ljs
 * 2011-09-06
 *
 */
public class PairingHeap {
	//left-child, right-sibling representation
	static class Node{
		private int key; 
		
		//left is the parent for first child; is the left sibling for other children
		private Node left;		
		
		private Node sibling;	
		
		//child points to the leftmost-child 
		private Node child;
				 
		public Node(int key){
			this.key = key;
		}
		public String toString(){
			return String.valueOf(this.key);
		}
	}
	
	private Node root;
	
	private Node linkPair(Node first,Node second){
		if(second==null) return first;
		if(first==null) return second;
		
		if(first.key<second.key){
			//second is linked to first as a child
			
			//retain the sibling relation
			Node secondzSibling = second.sibling;
			first.sibling = secondzSibling;
			if(secondzSibling != null) secondzSibling.left = first;
			
			Node firstzChild = first.child;
			
			//update second's left and sibling pointers
			second.left = first;
			second.sibling = firstzChild;
			
			//update first.child's pointer
			if(firstzChild != null) firstzChild.left = second;
			
			//update first's child
			first.child = second;
			return first;
		}else{
			//first is linked to second as a child
			
			//retain the sibling relation
			Node firstzLeft = first.left;
			second.left = firstzLeft;
			if(firstzLeft != null){
				if(firstzLeft.child == first){
					//firstzLeft is first's parent
					firstzLeft.child = second;
				}else{
					//firstzLeft is first's left sibling					
					firstzLeft.sibling = second;
				}
			}			
			
			Node secondzChild = second.child;
			//update first's left and sibling pointers
			first.left = second;
			first.sibling = secondzChild;
			
			//update second's child pointer
			if(secondzChild != null) secondzChild.left = first;
			
			//update second's child
			second.child = first;
			return second;
		}
	}
	public Node insert(Node node){
		if(root==null) 
			root = node;
		else
			root = linkPair(node,root);
		return node;
	}
	
	public void decreaseKey(Node x,int k) throws Exception{
		if(x.key<k) throw new Exception("key is not decreased!");
		x.key = k;
		if(x!=root){
			//cut x subtree from its siblings
			Node xzLeft = x.left; 
			//if x is not root, its left (i.e. xzLeft) can never be null
			if(xzLeft.child==x){//xzLeft is x's parent
				xzLeft.child = x.sibling; 				
			}else{//xzLeft is x's left sibling
				xzLeft.sibling = x.sibling;
			}
			if(x.sibling!=null){
				x.sibling.left = xzLeft;
			}
			
			//merge this tree with x subtree
			x.left = null;
			x.sibling = null;
			root = this.linkPair(x, root);
		}
	}
	
	public void merge(Node rhs){
		if(this.root==null) {
			this.root = rhs;
			return;
		}
		if(rhs==null) return;
		
		this.root = this.linkPair(this.root, rhs);
	}
	public Node findMin(){
		return this.root;
	}
	
	public Node extractMin(){
		Node z = this.root;
		if(z!=null){
			if(z.child==null)
				root = null;
			else{
				Node firstSibling = z.child;
				firstSibling.left = null;				
				root = mergeSubHeaps(firstSibling);
			}
		}
		return z;
	}
	
	private Node mergeSubHeaps(Node firstSibling){
		//the 1st pass: merge pairs from left side
		Node first = firstSibling;
		Node second = first.sibling;
				
		Node tail = first;
		if(second!=null){
			tail = this.linkPair(first, second);
			first = tail.sibling;
			if(first!= null)
				second = first.sibling;
			else
				second = null;
		}
		while(first != null && second!=null){			
			tail = this.linkPair(first, second);
			first = tail.sibling;
			if(first!= null)
				second = first.sibling;		
			else
				second = null;
		}
		
		//the 2nd pass: merge pairs from right side
		if(first!=null){
			tail = first;
		}
		
		Node prev = tail.left;
		while(prev!=null){
			tail = this.linkPair(prev, tail);
			prev = tail.left;
		}
		return tail;
	}
	public void print(){
		System.out.println("Pairing Heap:");
		this.print(0, this.root);
	}
	
	private void print(int level, Node node){
		for (int i = 0; i < level; i++) {
            System.out.format(" ");
        }
		System.out.format("|");
        for (int i = 0; i < level; i++) {
        	System.out.format("-");
        }
        System.out.format("%d%n", node.key);
        Node child = node.child;
        while(child!=null){        	
        	print(level + 1, child);
        	child = child.sibling;
        }       	
	}
	public static void main(String[] args) throws Exception {
		PairingHeap pheap = new PairingHeap();
		Node node7=pheap.insert(new Node(7));
		pheap.insert(new Node(19));
		Node node2=pheap.insert(new Node(2));
		
		PairingHeap pheap2 = new PairingHeap();
		pheap2.insert(new Node(9));
		pheap2.insert(new Node(17));
		pheap2.insert(new Node(12));
		pheap2.insert(new Node(14));		
		pheap.merge(pheap2.root);
		
		pheap2 = new PairingHeap();
		pheap2.insert(new Node(15));
		pheap2.insert(new Node(18));
		pheap2.insert(new Node(16));
		pheap2.insert(new Node(5));
		Node node11=pheap2.insert(new Node(11));		
		pheap.merge(pheap2.root);
		
		pheap2 = new PairingHeap();
		pheap2.insert(new Node(4));
		pheap2.insert(new Node(8));		
		pheap.merge(pheap2.root);
		
		pheap2 = new PairingHeap();
		Node node3=pheap2.insert(new Node(3));
		pheap2.insert(new Node(13));
		pheap2.insert(new Node(10));
		pheap.merge(pheap2.root);
		
		pheap.insert(new Node(6));
		
		pheap.print();
		
		Node min = pheap.findMin();
		System.out.format("min: %d%n", min.key);
		
		pheap.decreaseKey(node11, 0);
		pheap.decreaseKey(node7, 4);
		pheap.decreaseKey(node2, 1);
		pheap.decreaseKey(node3, 2);
		
		min = pheap.extractMin();
		while(min!=null){
			System.out.format("%d ",min.key);
			min = pheap.extractMin();		
		}
	}

}

测试输出:

Pairing Heap:
|2
 |-6
 |-3
  |--10
  |--13
 |-4
  |--8
 |-5
  |--11
  |--15
   |---16
   |---18
 |-9
  |--14
  |--12
  |--17
 |-7
  |--19
min: 2
0 1 2 4 4 5 6 8 9 10 12 13 14 15 16 17 18 19


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值