生成器函数和生成器表达式
在需要时产生结果,而不是立即产生结果
生成器函数:使用常规的def语句编写,但是使用yield语句一次返回一个结果,在每次结果产生之间挂起和恢复他们的状态
生成器表达式:类似列表推导,但是返回一个按需产生结果的一个对象,而不是创建一个结果列表
二者都不会一次性的创建一个列表,从而节省了空间
生成器函数
常规函数,使用return立即返回结果
生成器函数:当创建时,他们被特殊地编译成一个支持迭代工具的对象,并且在调用的时候不会返回结果,而是返回一个生成器,这个生成器支持迭代工具
生成器函数定义
def functionname(参数):
TODO
yield 返回值
TODO
生成器函数使用yield返回一个值,yield语句会挂起该函数并向调用者传回一个值,但同时也保留了足够的状态使函数能从它离开的地方继续,当继续时,函数在上一个yield传回后立即继续执行
def gensquares(N):
for i in range(N):
yield i**2
x=gensquares(3)
print(type(x))
print(dir(x))
运行结果:
<class 'generator'>
['__class__', '__del__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__lt__', '__name__', '__ne__', '__new__', '__next__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'gi_yieldfrom', 'send', 'throw']
可以看出函数是一个generator,并且内置方法有__iter__和__next__,所以可以用迭代工具,以及next函数
生成器函数的使用
可以使用for等迭代工具,产生值
def gensquares(N):
for i in range(N):
yield i**2
x=gensquares(3)
for i in x:
print(i)
运行结果:
0
1
4
也可以使用next函数
def gensquares(N):
for i in range(N):
yield i**2
x=gensquares(3)
print(next(x))
print(next(x))
运行结果:
0
1
函数遇到yield时,会产生一个值,并将这个值返回给调用者,外层的for循环,然后生成器函数暂停,函数的状态被保存下来,在yield语句之后被收走控制权
生成器表达式
从语法上讲,生成器表达式和一般的列表推导一样,而且也支持所有列表推导的语法(包括if过滤器和循环嵌套),但是生成器表达式是圆括号
g=(x**2 for x in range(4))
print(type(g))
#如果要一次获取全部的生成器的全部的值
print(list(x**2 for x in range(4)))
运行结果:
<class 'generator'>
[0, 1, 4, 9]
#生成器表达式
G=(c*4 for c in 'SPAM')
print(list(G))
#转换为生成器函数
def timesfour(s):
for c in s:
yield c*4
g=timesfour("SPAM")
#一个生成器,可以使用list获取全部的值
print(list(g))
运行结果:
['SSSS', 'PPPP', 'AAAA', 'MMMM']
['SSSS', 'PPPP', 'AAAA', 'MMMM']