mimic分析
文章平均质量分 91
Ljugg
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
六大 EHR 数据库核心特征描述
第一部分 六大 EHR 数据库核心特征描述一、MIMIC4:全球重症研究 “黄金标杆”核心定位:麻省理工学院主导的公开重症医学数据库,聚焦 ICU 患者全周期诊疗数据,是重症领域科研与 AI 模型开发的首选数据集。数据概况:最新 3.0 版本覆盖 2008-2022 年数据,含 54.6 万住院人次(其中 9.4 万 + ICU 患者),分钟级生命体征监测(如心率、血压),配套电子病历、实验室检查、影像报告等多维度数据,特护单(chartevents)数据量较旧版激增 50%。原创 2025-10-27 01:39:28 · 717 阅读 · 0 评论 -
mimic提取相关的实验室检查信息
本文介绍了从MIMIC-IV数据库中提取缺血性卒中患者的SQL查询方法。首先创建临时表stroke_patients_subjects存储符合ICD-9(434%)或ICD-10(I63%)诊断标准的患者ID,并关联患者表获取人口统计学信息。随后通过ALTER TABLE添加实验室检查相关的字段,并更新数据。最后,通过UNION ALL查询统计卒中患者各类实验室检查(如血液、脑脊液、骨髓等)的检测数量。该查询流程实现了卒中患者数据的筛选、扩展和统计分析,为临床研究提供数据支持。原创 2025-10-13 04:14:24 · 608 阅读 · 0 评论 -
mimic数据统计
本文介绍了MIMIC-IV数据库的安装连接方法及核心表结构说明,重点分析了卒中相关ICD编码提取技术。主要内容包括:1)通过psql命令连接数据库并导入数据;2)详细说明医院表结构(如admissions、diagnoses_icd等20余张表)及其功能;3)卒中ICD编码范围(ICD-9为430-438,ICD-10为I60-I69);4)SQL示例代码:提取缺血性卒中(434)和阿尔茨海默病(G30/G31)患者ID;5)诊断频次统计与ICD编码匹配方法,包括Python代码实现ICD标题匹配及异常处理原创 2025-08-21 20:59:41 · 935 阅读 · 0 评论
分享