2023第十四届蓝桥杯国赛 C/C++ 大学 B 组 (赛后记录)

2023 第十四届蓝桥杯国赛 C / C + + 大学 B 组 2023第十四届蓝桥杯国赛 C/C++ 大学 B 组 2023第十四届蓝桥杯国赛C/C++大学B

前言

由于是学校期末复习周, 很多算法没有复习, 结果考了一堆板题 (悲

赛后代码记录

A题 子 2023

直接跑暴力就行, 应该没啥问题

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define int long long
using namespace std;

string s;
int res;
char op[] = {'2', '0', '2', '3'};

void dfs(int u, int cnt) {
    if (cnt == 4) {
        res++;
        return;
    }
    if (u >= sz(s)) return;

    if (s[u] == op[cnt]) dfs(u + 1, cnt + 1);
    dfs(u + 1, cnt);
}

string get(string s) {
    string res;
    for (auto &c: s) {
        if (c == '2' || c == '0' || c == '3')
            res += c;
    }
    return res;
}

void solve() {
    for (int i = 1; i <= 2023; i++) s += get(to_string(i));
    dfs(0, 0);
    de(res);
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

  • 答案
res = 5484660609

B题 双子数

筛一下可以作为 pq 的素数, 然后暴力枚举判断就行, 实测跑的很快

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
// #define int long long
#define int __int128
using namespace std;

constexpr int N = 1e7 + 10;
int primes[N];
int cnt;
bool vis[N];

void get_p(int n = sqrt(23333333333333) + 10) {
    for (int i = 2; i <= n; i++) {
        if (!vis[i]) primes[cnt++] = i;
        for (int j = 0; i * primes[j] <= n; j++) {
            vis[i * primes[j]] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

void solve() {
    get_p();
    int res = 0;
    for (int i = 0; i < cnt; i++)
        for (int j = i + 1; j < cnt; j++) {
            int num = primes[i] * primes[i] * primes[j] * primes[j];
            if (num < 2333) continue;
            if (num > 23333333333333) break;
            res++;
        }
    cout << (long long)res;
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}
  • 错误答案
res = 947303
  • update
    感谢群友让我知道我得分-5, 这里计算中long long爆掉了, 需要 __int128
  • 正确答案
res = 947293

C题 班级活动

more 表示所有id中人数多于两个的人数去掉匹配的 2 位剩下的总人数,one 表示只有一个的人数,如果 more 大于等于 one 输出 more,否则输出 more + (one-more)/ 2

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define int long long
using namespace std;
int n;

void solve() {
    map<int, int> cnt;
    cin >> n;
    for (int i = 1, x; i <= n; i++) {
        cin >> x;
        cnt[x]++;
    }

    int one = 0, more = 0;
    for (auto [x, c]: cnt) {
        if (c == 1) one++;
        else if (c > 2) more += c - 2;
    }

    if (more >= one) cout << more;
    else cout << more + (one - more) / 2;
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

D题 合并数列

一眼双指针, 模拟一下过程就行了

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define int long long
using namespace std;

constexpr int N = 1e7 + 10;
int n, m;
int a[N];
int b[N];

void solve() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i]; 
    for (int i = 1; i <= m; i++) cin >> b[i];

    int res = 0;
    int suma = 0, sumb = 0;
    int i = 1, j = 1;
    while (i <= n + 1 && j <= m + 1) {
        if (suma == sumb) suma += a[i++], sumb += b[j++];
        else if (suma < sumb) res++, suma += a[i++];
        else res++, sumb += b[j++];
    }

    cout << res;
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

E题 数三角

是个原… (我没做过 悲
附上原题连接
赛时直接 O ( n 3 ) O(n^3) O(n3)枚举了 (暴力
正解思路就是枚举所有顶点和该顶点能到的点的边长, 相同的顶点和边长可以组成等腰三角形, 但这样会出现三点共线的情况, 再把这一部分给减去就行

  • 贴上正解代码 (感觉很对, 牛客的数据是过了
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define all(a) a.begin(), a.end()
#define int long long
#define PII pair<int, int>
using namespace std;

int n, m, k;

void solve() {
    cin >> n;
    
    set<PII> vis;
    
    vector<PII> point(n);
    for (auto &p: point) {
        auto &[x, y] = p;
        cin >> x >> y;
        vis.insert(p);
    }

    auto get_dis = [] (PII &a, PII &b) {
        auto &[x1, y1] = a;
        auto &[x2, y2] = b;
        return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
    };

    vector<PII> edge;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) {
            if (i == j) continue;

            int eg = get_dis(point[i], point[j]);
            edge.emplace_back(i, eg);
        }

    auto check = [&] (int x, int y) {
        return vis.count((PII){x, y});
    };

    // 三点共线数 cnt
    int cnt = 0;
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++) {
            auto &[x1, y1] = point[i];
            auto &[x2, y2] = point[j];
            int dx = x1 + x2, dy = y1 + y2;
            if (dx % 2 || dy % 2) continue;
            cnt += check(dx / 2,  dy / 2);
        }

    sort(all(edge));
    edge.emplace_back(-1, -1);  // 用来计算最后一个点的情况

    auto calc = [] (int &x) {
        return x >= 2? (x * (x - 1) / 2) : 0;
    };

    int las_point = -1, las_dis = -1;
    int c = 0;

    int ans = 0;  // 不考虑三点共线的情况的所有 共起点, 等边长 的三角形
    for (auto &[po, dis]: edge) {
        if (po == las_point && dis == las_dis) {
            c++;
        } else {
            ans += calc(c);
            c = 1, las_point = po, las_dis = dis;
        }
    }

    cout << ans - cnt;  // 把 所有情况 - 三点共线的情况 = 答案
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

F题 删边问题

没复习缩点, 暴力都很难写, 直接输出 -1 了, 哭死, 等复习板子之后再补, 感觉缩点之后很容易求, 板题 + 1

G题 AB 路线

很明显的分层图, 但由于没有复习算法, 压根没想起来有分层图这个玩意, 赛时骗的分, 赛后很快就写出了, 再次悲伤, 代码很板, 板题 + 1

  • 思考 (直接 bfs 是否满足最短路呢)
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define int long long
using namespace std;

constexpr int N = 1000 + 10;
int n, m, k;
char g[N][N];
int dist[N][N][11];  // 把所有的情况记录下来
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int bfs(int sx, int sy) {
    memset(dist, 0x3f, sizeof dist);
    dist[sx][sy][1] = 0;
    
    queue<tuple<int, int, int>> q;  // x y 以及到达该点的 c
    q.emplace(sx, sy, 1);
    while (q.size()) {
        auto [x, y, c] = q.front();
        q.pop();
        if (x == n && y == m) return dist[n][m][c];

        bool turn = false;  // 是否应该换字母走
        if (c == k) turn = true;
        
        for (int i = 0; i < 4; i++) {
            int a = x + dx[i], b = y + dy[i];
            if (a < 1 || a > n || b < 1 || b > m) continue;

            if (!turn && g[x][y] == g[a][b]) {
                if (dist[a][b][c + 1] > dist[x][y][c] + 1) {
                    dist[a][b][c + 1] = dist[x][y][c] + 1;
                    q.emplace(a, b, c + 1);
                }
            }

            if (turn && g[x][y] != g[a][b]) {
                if (dist[a][b][1] > dist[x][y][c] + 1) {
                    dist[a][b][1] = dist[x][y][c] + 1;
                    q.emplace(a, b, 1);
                }
            }
        }
    }

    return -1;  // 没到达返回 -1
}

void solve() {
    cin >> n >> m >> k;
    for (int i = 1; i <= n; i++) cin >> g[i] + 1;
    cout << bfs(1, 1);    
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

H题 抓娃娃

狠狠的吐槽题面, 那么重要的条件为什么不直接在题面中提出来, 而是隐藏在下一页的数据范围里, 本来想过这个做法, 但被自己推翻了, 结果数据中不存在能推翻这个做法的情况…赛时无奈写的暴力, 狠狠的悲伤
思路: 由于数据范围中给了一个很重要的条件, 就是查询的区长度间一定大于所有的线段, 也就是说, 只要线段的中点落在查询的区间, 那么他一定是被包含的, 由于计算中点需要除法, 容易出精度问题, 我们把所有的坐标映射成原来的两倍, 那么中点一定也是整数坐标了, 然后跑个前缀和即可

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
#define de(a) cout << #a << " = " << a << "\n";
#define int long long
using namespace std;

constexpr int N = 1e6 + 10;
int n, m;
int s[N * 2];

void solve() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        int l, r; cin >> l >> r;
        s[l + r]++;  // 中点坐标其实是 (l + r) / 2, 但映射成了 l + r
    }
    
    for (int i = 1; i < 2 * N; i++) s[i] += s[i - 1];

    while (m--) {
        int L, R; cin >> L >> R;
        cout << s[2 * R] - s[2 * L - 1] << "\n"; // 差分
    }
}


signed main() {
    IOS;

    int T = 1;
    // cin >> T; cin.get();

    while (T --) solve();

    return 0;
}

I题 拼数字

不会, 特判了几个暴力跑出来的数据, 其他的都输出的 -1

  • 等待大神题解

J题 逃跑

看见有概率果断没写, 输出样例了

总结

  • 有原题很离谱, 板题也好多, 评价是不如省赛
  • 发挥不太好, 希望有奖 (求求
目前尚未有2024年第十四届蓝桥杯软件C/C++大学B的真题与题解发布,因为该事的时间线可能还未到达公布阶段[^1]。然而,可以基于以往的比形式和内容推测其考察的知识点范围以及提供一些常见的练习方向。 以下是关于如何准备此类比的一些指导: ### 准备指南 #### 一、熟悉基础算法 掌握基本的数据结构和经典算法对于参者至关重要。这包括但不限于数、链表、栈、队列等数据结构的应用;排序(快速排序、归并排序)、查找(二分法)、动态规划等问题解决方法的学习与实践。 ```cpp // 快速排序实现 (C++) void quickSort(int arr[], int low, int high){ if(low < high){ int pi = partition(arr,low,high); quickSort(arr, low, pi-1); quickSort(arr, pi+1, high); } } int partition (int arr[], int low, int high){ int pivot = arr[high]; int i = (low - 1); for (int j = low; j <= high- 1; j++){ if (arr[j] < pivot){ i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return (i + 1); } ``` ```java // 快速排序实现 (Java) public static void quickSort(int[] array, int start, int end) { if(start >= end) return; int pivotIndex = partition(array, start, end); quickSort(array, start, pivotIndex - 1); quickSort(array, pivotIndex + 1, end); } private static int partition(int[] array, int start, int end) { int pivotValue = array[end]; int index = start; for(int i=start;i<end;i++) { if(array[i]<pivotValue) { swap(array,i,index++); } } swap(array,end,index); return index; } ``` #### 二、深入理解编程语言特性 无论是使用C++还是Java参加竞,都需要深入了解所选语言的特点及其标准库的功能。例如,在C++中熟练运用STL容器类如vector、map等能够极大提高编码效率;而在Java里,则需熟知Collections框架下的各类集合类型及其实现原理。 #### 三、模拟实战训练 通过历年试题进行反复演练是非常有效的备考方式之一。虽然现在无法获取到最新的2024年具体题目,但是可以通过分析往年的考题来预测可能出现的新颖考点,并针对性加强薄弱环节。 --- ###
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.Zero

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值