在分布式存储和分布式计算方面,Hadoop都是用从/从(Master/Slave)架构。在一个配置完整的集群上,想让Hadoop这头大 象奔跑起来,需要在集群中运行一系列后台(deamon)程序。不同的后台程序扮演不用的角色,这些角色由NameNode、DataNode、Secondary NameNode、JobTracker、TaskTracker组成。其中NameNode、Secondary NameNode、JobTracker运行在Master节点上,而在每个Slave节点上,部署一个DataNode和TaskTracker,以便这个Slave服务器运行的数据处理程序能尽可能直接处理本机的数据。对Master节点需要特别说明的是,在小集群中,Secondary NameNode可以属于某个从节点;在大型集群中,NameNode和JobTracker被分别部署在两台服务器上。
目录
NameNode和Secondary NameNode的区别
NameNode的作用
NameNode是Hadoop分布式文件系统(HDFS)中的关键组件,它负责管理文件系统的命名空间和控制对文件的访问。以下是NameNode的一些主要作用:
(1)命名空间管理:
NameNode维护文件系统的目录树和文件的元数据信息,包括文件和目录的名称、权限、所有者、时间戳、数据块等信息。
(2)数据块管理:
NameNode记录文件数据块的分布信息,即哪些数据块存储在哪些DataNode上。它负责数据块的分配和复制策略。
(3)文件访问控制:
NameNode管理文件的权限和所有权信息,确保用户和应用程序能够按照权限访问文件。
(4)文件系统操作:
NameNode处理文件系统操作请求,如创建文件、删除文件、重命名文件等。
(5)故障恢复:
NameNode通过维护一个称为FsImage的文件系统镜像和EditLog的事务日志来支持故障恢复。如果NameNode发生故障,可以使用这些信息恢复文件系统的状态。
(6)元数据查询:
NameNode提供元数据查询服务,允许用户和应用程序查询文件和目录的属性。
(7)数据块复制和平衡:
NameNode负责监控DataNode上的数据块复制和平衡,以确保数据的可靠性和系统的负载均衡。
(8)安全和完整性:
NameNode还负责文件系统的安全和数据完整性,包括处理数据块校验和和数据块的完整性检查。
(9)集群管理:
NameNode还参与Hadoop集群的管理,包括监控DataNode的状态和维护集群的健康。
由于NameNode的重要性和它处理的大量元数据信息,它通常被认为是HDFS中的一个瓶颈。因此,在Hadoop 2.x版本中引入了HA(高可用性)配置,允许多个NameNode实例运行,以提高系统的可用性和容错能力。
Secondary NameNode的作用
Secondary NameNode在Hadoop分布式文件系统(HDFS)中扮演着重要的辅助角色,其主要作用包括:
(1)提供检查点(Checkpoint):
Secondary NameNode帮助NameNode定期合并文件系统镜像(FsImage)和编辑日志(Edits),这个过程称为Checkpoint。通过定期进行Checkpoint,可以减少NameNode启动时需要处理的Edits日志文件的大小,从而加快NameNode的启动速度。
(2)减轻NameNode负担:
随着HDFS操作的增加,Edits日志文件会变得越来越大,Secondary NameNode通过合并操作帮助减小Edits文件的大小,减轻NameNode的负载。
(3)加速故障恢复:
在NameNode发生故障时,HDFS需要恢复到故障发生前的状态。Secondary NameNode通过合并FsImage和Edit Log生成新的FsImage文件,帮助NameNode快速恢复到最近一次Checkpoint的状态,而不需要重新读取整个Edit Log,大大减少了恢复时间。
(4)元数据备份:
Secondary NameNode还负责备份NameNode的元数据,通过存储最新的Checkpoint,确保在NameNode出现问题时,集群能够从最近的Checkpoint恢复。
(5)优化性能:
Secondary NameNode通过压缩和清理Edit Log来减小其大小,这些功能使得HDFS能够更好地处理故障恢复和大量写入操作,提供更可靠和高效的分布式存储解决方案。
总的来说,Secondary NameNode的主要作用是辅助NameNode进行元数据的合并和备份,确保HDFS的高可用性和快速恢复能力。它不是NameNode的热备份,而是一个重要的辅助节点,通过定期合并和备份操作,提高NameNode的性能和稳定性
NameNode和Secondary NameNode的区别
(1)角色和功能:
NameNode:是HDFS的主节点,负责管理文件系统的命名空间和控制对文件的访问。它存储了文件系统的元数据,包括文件和目录的名称、权限、所有者、时间戳、数据块等信息,以及数据块的分布信息。
Secondary NameNode:是NameNode的辅助节点,主要负责合并NameNode的编辑日志(Edits)和文件系统镜像(FsImage),并定期创建检查点(Checkpoint)。它不直接参与文件系统操作的决策,而是帮助NameNode减轻负担。
(2)处理实时数据变化:
NameNode:实时记录和处理来自客户端的数据变化请求,如文件创建、删除、重命名等操作。
Secondary NameNode:不接受或记录任何实时的数据变化,而是定期从NameNode获取编辑日志和镜像文件,进行合并操作。
(3)故障恢复:
NameNode:在故障恢复时,需要从FsImage和Edits日志中恢复文件系统状态,如果Edits日志文件很大,恢复过程可能会很慢。
Secondary NameNode:通过定期合并Edits日志和FsImage,生成新的FsImage文件,帮助NameNode快速恢复到最近一次Checkpoint的状态。
(4)系统负载:
NameNode:承担所有文件系统操作的负载,Edits日志文件可能会随着时间增长而变得非常大,增加系统负载。
Secondary NameNode:通过合并操作减小Edits文件的大小,减轻NameNode的负载。
(5)部署和资源需求:
NameNode:作为核心节点,通常需要较高的资源配置以处理大量的文件系统操作请求。
Secondary NameNode:资源需求与NameNode相似,因为它需要处理合并操作,但通常不处理实时请求,因此可以部署在不同的机器上以提高系统的稳定性和安全性。
(6)高可用性(HA):
NameNode:在Hadoop 2.x中,可以通过配置多个NameNode实现高可用性。
Secondary NameNode:不承担NameNode的故障转移功能,它不是一个高可用性的解决方案,而是一个辅助节点。
总结来说,NameNode是HDFS的核心节点,负责实时处理文件系统操作和维护元数据,而Secondary NameNode是一个辅助节点,负责定期合并编辑日志和文件系统镜像,帮助NameNode减轻负担和提高系统的恢复速度。
DataNode的作用
(1)存储数据:
DataNode负责存储HDFS中实际的数据块(block)。当文件被写入HDFS时,NameNode会调度DataNode存储文件的数据块。
(2)数据块管理:
DataNode管理其存储的数据块,包括数据块的创建、删除和复制。它定期向NameNode报告其上存储的所有数据块的列表,以便NameNode维护文件系统的状态。
(3)data数据复制:
为了提高数据的可靠性和可用性,HDFS允许数据块的副本存储在不同的DataNode上。DataNode根据NameNode的指令进行数据块的复制操作。
(4)数据检索:
当客户端请求读取数据时,DataNode会从其存储的数据块中检索数据并发送给客户端。
(5)心跳机制:
DataNode定期向NameNode发送心跳信号(heartbeat),表明它的状态和可用性。这有助于NameNode监控集群中所有DataNode的健康状态。
(6)错误处理:
DataNode会检测和报告存储在其上的数据块的错误和异常情况,如数据损坏或丢失。
(7)负载均衡:
DataNode可以参与HDFS的负载均衡操作,根据NameNode的指令移动数据块以平衡集群的存储负载。
(8)数据恢复:
在数据块丢失或损坏的情况下,DataNode可以从其他拥有相同数据块副本的DataNode复制数据块,以恢复数据。
(9)存储报告:
DataNode向NameNode提供存储报告,包括存储容量、剩余空间和数据块的详细信息。
(10)数据完整性:
DataNode负责维护存储在其上的数据块的完整性,包括校验和(checksum)的验证,确保数据的准确性。
DataNode和NameNode的区别
(1)功能角色:
NameNode:作为HDFS的主节点(Master Node),负责管理文件系统的命名空间和控制对文件的访问。它维护文件系统的元数据,包括文件和目录的层次结构、权限、所有者信息、文件的块映射信息等。
DataNode:作为HDFS的工作节点(Slave Node),负责存储实际的数据块(block)。每个文件被分割成多个数据块,这些数据块被存储在不同的DataNode上。
(2)数据管理:
NameNode:不存储实际的数据,只存储文件系统的元数据和文件到数据块的映射信息。
DataNode:存储实际的数据块,并且负责数据块的本地管理,如读取、写入、删除和复制数据块。
(3)通信协调:
NameNode:作为通信中心,协调客户端和DataNode之间的交互。客户端的所有文件操作请求首先发送到NameNode,由NameNode决定数据块的位置并授权DataNode进行数据传输。
DataNode:与NameNode通信,定期发送心跳信号和块报告,报告其健康状况和存储的数据块列表。
(4)故障恢复:
NameNode:负责文件系统的一致性和完整性。在NameNode故障时,需要从FsImage和Edits日志中恢复文件系统状态。
DataNode:在数据块丢失或损坏时,可以从其他DataNode复制数据块以恢复数据。
(5)集群规模:
NameNode:通常在集群中只有一个NameNode,它是单点故障源。在Hadoop 2.x中,通过高可用性(HA)配置可以运行多个NameNode以提供故障转移。
DataNode:可以有多个,实际上,DataNode的数量通常与集群的存储容量成正比。
(6)性能和优化:
NameNode:可能会成为性能瓶颈,因为它需要处理大量的元数据操作。为了优化性能,可以配置NameNode的内存和使用JournalNode等技术。
DataNode:性能优化通常涉及存储I/O和网络带宽,因为它们直接参与数据的读写操作。
(7)存储和硬件要求:
NameNode:对存储的要求相对较低,因为它只存储元数据,但对内存和处理能力有较高要求。
DataNode:需要大量的存储空间,通常部署在具有高存储容量的硬件上。
总结来说,NameNode是HDFS的大脑,负责管理文件系统的元数据和协调文件操作,而DataNode是HDFS的肌肉,负责存储和管理实际的数据块。两者共同工作,提供了一个高可靠性和高吞吐量的分布式存储系统。
JobTracker
(1)作业控制:
JobTracker负责接收客户端提交的作业,并将其分解为多个任务(Map任务和Reduce任务)。它监控作业的执行状态,包括任务的进度和状态,确保作业按照预期执行。
(2)状态监控:
JobTracker监控TaskTracker的状态、作业状态和任务状态,这包括监控TaskTracker的健康状况、资源使用情况以及任务的执行进度和状态。这种监控对于容错和任务调度决策至关重要。
(3)资源管理:
JobTracker负责管理集群资源,包括监控各个TaskTracker节点的负载情况、可用内存和CPU资源等,并根据任务的执行情况动态调整资源分配。
(4)任务调度:
JobTracker将作业分解成多个任务,并根据任务的类型和依赖关系来调度任务的执行顺序。它会将任务分配给空闲的TaskTracker节点,并监控任务的执行情况。如果任务失败或超时,JobTracker会重新调度该任务,并尝试在其他节点上重新执行。
(5)故障处理和容错机制:
当任务失败时,JobTracker会将失败的任务重新调度,并尝试在其他节点上重新执行。如果一个TaskTracker节点宕机或失联,JobTracker会将该节点上的任务重新分配给其他节点,并确保作业的顺利执行。
(6)作业监控和统计:
JobTracker持续监控作业的执行情况,并提供作业的实时状态和统计信息,如作业的启动时间、结束时间、总执行时间、任务成功率、任务失败率等指标。
(7)作业历史记录和日志管理:
JobTracker维护作业的历史记录和日志信息,包括作业的启动参数、执行过程中的日志输出、任务的执行状态等,这对于作业的调试、优化和性能分析非常重要。
(8)用户接口和管理功能:
JobTracker提供了多种用户接口和管理功能,包括命令行界面、Web界面和API接口等,用户可以通过这些接口来提交作业、查询作业状态、监控作业执行情况以及管理集群资源。
(9)集群扩展和负载均衡:
JobTracker支持集群的扩展和负载均衡功能,可以动态地添加或删除TaskTracker节点,并自动重新分配任务以实现负载均衡。
总的来说,JobTracker是Hadoop集群中的全局管理者,负责作业管理、状态监控、任务调度等关键功能,确保MapReduce作业的顺利执行和集群资源的有效利用
DataNode和JobTracker的区别
DataNode:
作用:DataNode是Hadoop分布式文件系统(HDFS)中的一个组件,负责存储实际的数据块。它是HDFS的存储节点,每个DataNode都管理一部分的文件系统数据,并与NameNode通信以响应文件系统的操作请求,如创建、删除文件或目录。
存储:DataNode存储文件数据块的副本,并负责处理与这些数据块相关的读写请求。
通信:DataNode定期向NameNode发送心跳信号和块报告,以表明它们的状态和存储的数据块信息。
容错:DataNode通过存储多个数据块副本来提供容错能力,如果某个DataNode失败,其他DataNode上的数据块副本可以被用来恢复数据。
JobTracker:
作用:JobTracker是Hadoop MapReduce框架中的一个组件,负责管理和协调MapReduce作业的执行。在Hadoop 1.x版本中,JobTracker是集群中唯一的全局管理者,负责作业调度、任务监控和资源管理。
作业管理:JobTracker接收客户端提交的作业请求,并将作业划分为多个任务(Map任务和Reduce任务),然后调度这些任务在集群中的执行。
状态监控:JobTracker监控TaskTracker的状态、作业状态和任务状态,以便于容错和任务调度。
资源管理:JobTracker管理集群资源,根据任务的执行情况动态调整资源分配,并处理任务失败时的重新调度。
集群协调:JobTracker作为集群的中心节点,负责协调集群中的所有MapReduce任务执行。
总结来说,DataNode主要负责HDFS中的数据存储和管理,而JobTracker(在Hadoop 1.x中)负责MapReduce作业的调度和管理。在Hadoop 2.x及以后的版本中,JobTracker的功能被ResourceManager和NodeManager所取代,以支持更好的扩展性和稳定性。
TaskTracker的作用
TaskTracker是Hadoop MapReduce框架中的一个关键组件,其主要作用包括:
(1)任务执行:
TaskTracker负责在数据节点上执行MapReduce作业中的任务。这包括Map任务和Reduce任务的执行。
它直接与存储在本地节点上的数据交互,以减少网络传输,提高作业执行效率。
(2)心跳机制:
TaskTracker周期性地向JobTracker发送心跳信号,汇报自己的健康状况、资源使用情况、任务执行进度和状态。
这些心跳信息帮助JobTracker了解集群的状态,并为任务调度提供决策依据。
(3)任务监控:
TaskTracker监控在其上执行的任务,包括任务的启动、执行和完成。
它还负责监控任务的资源使用情况,确保任务不会超出分配的资源限制。
(4)任务状态报告:
TaskTracker向JobTracker报告每个任务的详细状态,包括任务的进度、是否成功完成或失败。
这些信息对于JobTracker进行故障恢复和重新调度任务至关重要。
(5)容错处理:
如果TaskTracker检测到在其上执行的任务失败,它会将失败的任务状态报告给JobTracker,以便JobTracker可以重新调度这些任务。
TaskTracker也参与处理节点故障,如果节点宕机,JobTracker会将该节点上的任务重新分配给其他节点。
(6)日志管理:
TaskTracker负责管理在其上执行的任务的日志,包括Map和Reduce任务的日志。
这些日志对于任务的调试和性能分析非常重要。
(7)本地资源管理:
TaskTracker管理本地节点上的资源,确保任务有足够的CPU和内存资源执行。
它还负责清理任务完成后不再需要的临时文件和资源。
(8)数据本地化:
TaskTracker尽可能地利用存储在本地节点上的数据,以减少数据传输和提高作业性能。
(9)与JobTracker的通信:
TaskTracker接收来自JobTracker的命令,如启动新任务、杀死任务或重新初始化TaskTracker本身。
TaskTracker是Hadoop集群中负责执行具体计算任务的工作节点,它与JobTracker协同工作,确保MapReduce作业的顺利执行和集群资源的有效利用。
TaskTracker和JobTracker的区别
TaskTracker和JobTracker是Hadoop MapReduce框架中的两个关键组件,它们在Hadoop集群中扮演着不同的角色和职责:
(1)角色定位:
JobTracker:在Hadoop 1.x版本中,JobTracker是集群中唯一的全局管理者,负责整个集群的作业控制和资源管理。它是Master节点,负责作业调度、任务监控和资源分配。
TaskTracker:TaskTracker是集群中的工作节点(Slave节点),负责执行JobTracker分配的任务,包括Map任务和Reduce任务。
(2)功能职责:
JobTracker:
作业调度:接收客户端提交的作业请求,将作业分解为多个任务,并根据集群资源和任务需求分配任务给TaskTracker。
状态监控:监控TaskTracker的状态、作业状态和任务状态,为容错和任务调度提供决策依据。
资源管理:管理集群资源,动态调整资源分配,处理任务失败时的重新调度。
TaskTracker:
任务执行:在数据节点上执行MapReduce作业中的任务,直接与存储在本地节点上的数据交互。
心跳机制:周期性地向JobTracker发送心跳信号,汇报自己的健康状况、资源使用情况和任务执行进度。
任务监控:监控在其上执行的任务,包括任务的启动、执行和完成,并向JobTracker报告任务状态。
(3)通信机制:
JobTracker:作为集群的中心节点,接收来自所有TaskTracker的心跳信号和状态报告,并向TaskTracker下达执行命令。
TaskTracker:与JobTracker通信,接收任务分配和执行命令,汇报任务执行状态和进度。
(4)容错和故障恢复:
JobTracker:负责处理集群级别的故障恢复,如重新调度失败的任务或重新分配已经完成的任务。
TaskTracker:参与处理节点级别的故障,如果检测到在其上执行的任务失败,会将失败的任务状态报告给JobTracker。
(5)存在数量:
JobTracker:在一个Hadoop集群中通常只有一个JobTracker实例。
TaskTracker:在一个Hadoop集群中可以有多个TaskTracker实例,每个数据节点上运行一个TaskTracker。
(6)系统升级:
在Hadoop 2.x及以后的版本中,JobTracker的功能被ResourceManager和NodeManager所取代,以支持更好的扩展性和稳定性。
总结来说,JobTracker是集群的全局管理者,负责作业调度和资源管理,而TaskTracker是执行具体任务的工作节点,负责任务的执行和状态报告。两者协同工作,确保MapReduce作业的顺利执行和集群资源的有效利用。