The 2021 CCPC Weihai Onsite M - 810975(容斥)

这篇博客探讨了如何利用组合数学和容斥原理解决两类编程竞赛题目。第一类题目要求在一定范围内填充数字,使得总和为给定值,通过插板法和容斥原理计算方案数。第二类题目涉及构造01串,要求1的个数固定且连续1段的最大长度受限,同样使用容斥原理求解。博主分享了思路和代码实现,并感叹区域赛中容斥原理的频繁出现,强调了掌握这种技巧的重要性。
摘要由CSDN通过智能技术生成

写这题前,先把这道hdu6397经典题写了 。
题意:给定n,m,k,要求个m个格子填数,使每个数在[0,n-1]范围内,且他们的和为k。
思路:首先,不管[0,n-1]这个限制条件,考虑怎么用组合数算出方案。我是这样理解的,我们对选出的数取个前缀和,那么这m个数的前缀和必然在[0,k]这个区间内,且满足不递减,和最后一个数必然是k,由于最后一个数已经定了,那么问题变成选m-1个数,使他们不递减,且在[0,k]区间内,可以考虑插板法,对[1,k]的左边右边插板,插的每个板表示这个板要选择当前空隙的左边那个数,所以组合数就是C(k+m-1,m-1);现在考虑[0,n-1]这个限制,显然可以容斥,所以问题转成怎么算至少有i个数超过n-1,且和为k的方案数,这又是一个经典组合数问题,我们可以把这个i个超过n-1的数都减去n,这样所有数都在[0,n-1]范围内,且和为k-ni,也可以理解为把和变为k-ni,然后把里面的i个数都加上n就符合条件了,所以方案是 C ( m , i ) × C ( k + m − 1 − n ∗ i , m − 1 ) C(m,i) \times C(k+m-1-n*i,m-1) C(m,i)×C(k+m1ni,m1);

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <time.h>
#include <map>
#include <algorithm>
#include <fstream>
//#include <unordered_map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 100;
const int INF = 0x7fffffff;
const int mod = 998244353;
const ll mod1 = 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值