写这题前,先把这道hdu6397经典题写了 。
题意:给定n,m,k,要求个m个格子填数,使每个数在[0,n-1]范围内,且他们的和为k。
思路:首先,不管[0,n-1]这个限制条件,考虑怎么用组合数算出方案。我是这样理解的,我们对选出的数取个前缀和,那么这m个数的前缀和必然在[0,k]这个区间内,且满足不递减,和最后一个数必然是k,由于最后一个数已经定了,那么问题变成选m-1个数,使他们不递减,且在[0,k]区间内,可以考虑插板法,对[1,k]的左边右边插板,插的每个板表示这个板要选择当前空隙的左边那个数,所以组合数就是C(k+m-1,m-1);现在考虑[0,n-1]这个限制,显然可以容斥,所以问题转成怎么算至少有i个数超过n-1,且和为k的方案数,这又是一个经典组合数问题,我们可以把这个i个超过n-1的数都减去n,这样所有数都在[0,n-1]范围内,且和为k-ni,也可以理解为把和变为k-ni,然后把里面的i个数都加上n就符合条件了,所以方案是 C ( m , i ) × C ( k + m − 1 − n ∗ i , m − 1 ) C(m,i) \times C(k+m-1-n*i,m-1) C(m,i)×C(k+m−1−n∗i,m−1);
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <time.h>
#include <map>
#include <algorithm>
#include <fstream>
//#include <unordered_map>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 100;
const int INF = 0x7fffffff;
const int mod = 998244353;
const ll mod1 =