http://www.lovelucy.info/python-crawl-pages.html
CUHK 上学期有门课叫做 Semantic Web,课程 project 是要搜集整个系里面的教授信息,输入到一个系统里,能够完成诸如“如果选了A教授的课,因时间冲突,B教授的哪些课不能选”、“和A教授实验室相邻的实验室都是哪些教授的”这一类的查询。这就是所谓的“语义网”了啊。。。然而最坑爹的是,所有这些信息,老师并没有给一个文档或者数据库,全要靠自己去系主页上搜集。唯一的想法是写个爬虫,令人悲哀的是,所有做这个 project 的同学,都是纯人肉手工完成,看得我只想扶墙。。。
从网页中抓取特定信息,我觉得这是一个普遍性的问题,以后经常会遇到。幸亏那个 project 只是需要我们系的所有教授的信息,大家人工也就算了。如果需要抓取的信息是海量的,举个栗子,把淘宝上所有的商品目录抓下来,那岂不是要吐血而亡?我决定好好把爬虫研究一下。
之前波波写过一个 java 程序,利用 HTML Parser 去解析团购网站 meituan.com 然后把每天的团购信息存到数据库里。稍微改改再爬爬拉手糯米,做个前端,一个团购导航站就问世了。我把程序跑了一下,全自动搜集,不算太复杂。
但是,我觉得 java 太啰嗦,不够简洁。Python 这个脚本语言开发起来速度很快,一个活生生的例子是因有关政策 verycd 开始自我阉割,有网友为了抢救资源,把整个 verycd 站爬了下来,镜像为 SimpleCD.org。看了一下爬虫 源代码,其实挺简单。使用方法:
|
看看效果:http://www.lovelucy.info/demo/www.163.com
1. 获取html页面
其实,最基本的抓站,两句话就可以了
|
这样可以得到整个 html 文档,关键的问题是我们可能需要从这个文档中获取我们需要的有用信息,而不是整个文档。这就需要解析充满了各种标签的 html。
2. 解析 html
SGMLParser
Python 默认自带 HTMLParser 以及 SGMLParser 等等解析器,前者实在是太难用了,我就用 SGMLParser 写了一个示例程序:
|
很简单,这里定义了一个叫做 ListName
的类,继承 SGMLParser
里面的方法。使用一个变量 is_h4
做标记判定 html 文件中的 h4
标签,如果遇到 h4
标签,则将标签内的内容加入到 List
变量 name
中。解释一下 start_h4()
和 end_h4()
函数,他们原型是 SGMLParser 中的
start_tagname(self, attrs)
end_tagname(self)
tagname
就是标签名称,比如当遇到 <pre>
,就会调用 start_pre
,遇到 </pre>
,就会调用 end_pre
。attrs
为标签的参数,以 [(attribute, value), (attribute, value), ...]
的形式传回。
输出:
虚拟票务 数码市场 家电市场 女装市场 男装市场 童装童鞋 女鞋市场 男鞋市场 内衣市场 箱包市场 服饰配件 珠宝饰品 美容市场 母婴市场 家居市场 日用市场 食品/保健 运动鞋服 运动户外 汽车用品 玩具市场 文化用品市场 爱好市场 生活服务
如果有乱码,可能是与网页编码不一致,需要替换最后一句 deconde()
的参数,我在香港淘宝默认用的是繁体编码。各位可以 copy 上面的代码自己试试,把淘宝的商品目录抓下来,就是这么简单。稍微改改,就可以抽取二级分类等其他信息。
pyQuery
pyQuery 是 jQuery 在 python 中的实现,能够以 jQuery 的语法来操作解析 HTML 文档,十分方便。使用前需要安装,easy_install pyquery 即可,或者 Ubuntu 下
sudo apt-get install python-pyquery |
以下例子:
|
BeautifulSoup
有个头痛的问题是,大部分的网页都没有完全遵照标准来写,各种莫名其妙的错误令人想要找出那个写网页的人痛打一顿。为了解决这个问题,我们可以选择著名的 BeautifulSoup 来解析 html 文档,它具有很好的容错能力。
还是用例子来说明吧。我在工作时遇到一个需求,是要查询某一个 NS 服务器的所有域名,通过搜索我找到 sitedossier.com 这个网站可以提供域名服务器的信息。那么就要写个爬虫来抓查询结果了,看上去查询结果页面就是一个 ol 列表,并不复杂。
有点棘手的是如果结果太多,它会进行分页。爬虫需要能够(1)自动翻页(2)知道最后一页。最后一页有“End of list”字符串,所以可以通过正则表达式搞定。
代码开源在 Github 上,几个函数都还算清晰可读,这里就不贴了。感觉这段脚本还是有点小用处的,比如你可以查到迄今为止有 304373 个域名在用 DNSPOD 解析,或者你想看看新浪 SAE 上到底有多少个网站,又或者了解下百度有些什么域名,观察域名规律抢注近似域名神马的……
用法:
|
BeautifulSoup 功能强大,我还在研究学习。有进展会更新本文。