【NLP】pyhanlp的安装与使用

本文介绍了如何安装和使用pyhanlp,包括分词、关键词提取、自动摘要、依存句法分析、共性分析、短语提取、文本分类和情感分析等功能,并提供了相关资源和示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pyhanlp


HanLP是由一系列模型与算法组成的Java工具包,目标是普及自然语言处理在生产环境中的应用。HanLP具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。

HanLP有如下功能:

  • 中文分词
  • 词性标注
  • 命名实体识别
  • 依存句法分析
  • 关键词提取新词发现
  • 短语提取
  • 自动摘要
  • 文本分类
  • 拼音简繁

安装pyhanlp


pip install pyhanlp

安装后在第一次使用时,当运行from pyhanlp import *时,会下载hanlp的数据文件,这个文件比较大,一般都会下载失败,推荐手动下载并放到要求的路径下。

data文件下载地址:https://github.com/hankcs/HanLP/releases

在页面中下载data-for-1.7.2.zip

然后把下载的文件放到C:\Anaconda3\Lib\site-packages\pyhanlp\static 目录下

再执行from pyhanlp import *,完成自动解压。

pyhanlp的使用


pyhanlp的参考文档:https://github.com/hankcs/pyhanlp

hanlp的参考文档:https://github.com/hankcs/HanLP/blob/master/README.md

pyhanlp的demo:https://github.com/hankcs/pyhanlp/tree/master/tests/demos

分词

pyhanlp可以自定义多种分词规则和模型,也可以加入自定义词典,经测试,默认的分词方法效果就不错,而且兼备词性标注以及命名实体识别,可以识别人名、地名、机构名等信息。

from pyhanlp import *
sentence = "下雨天地面积水"

# 返回一个list,每个list是一个分词后的Term对象,可以获取word属性和nature属性,分别对应的是词和词性
terms = HanLP.segment(sentence )  
for term in terms:
	print(term.word,term.nature)

关键词提取与自动摘要
from pyhanlp import *

document = "水利部水资源司司长陈明忠9月29日在国务院新闻办举行的新闻发布会上透露," \
           "根据刚刚完成了水资源管理制度的考核,有部分省接近了红线的指标," \
           "有部分省超过红线的指标。对一些超过红线的地方,陈明忠表示,对一些取用水项目进行区域的限批," \
           "严格地进行水资源论证和取水许可的批准。"

# 提取document的两个关键词
print(HanLP.extractKeyword(document, 2))

# 提取ducument中的3个关键句作为摘要
print(HanLP.extractSummary(document, 3))
依存句法分析
from pyhanlp import *
print(HanLP.parseDependency("徐先生还具体帮助他确定了把画雄鹰、松鼠和麻雀作为主攻目标。"))
共性分析

共性 是指 文本中词语共同出现的情况。

一阶共性分析也就是统计词频,二阶分析和三阶分析主要用来发现短语。

调用hanlp的共性分析模块,可以发现2个词或者3个词的出现次数(tf)、互信息(mi),左熵(le)、右熵(re)以及score。

参考自:https://blog.csdn.net/fontthrone/article/details/82824202

from pyhanlp 
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值