黑马程序员-算法-排序

----------- android培训java培训、java学习型技术博客、期待与您交流! ------------


1.冒泡排序

  冒泡排序是这样实现的:
  首先将所有待排序的数字放入工作列表中。
  从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
  重复2号步骤,直至再也不能交换。

	// 冒泡排序
	public void bubbleSort(int[] array) {
		for (int time = 0; time < array.length; time++) {//排序次数
			for (int i = array.length - 1, j = i - 1; j >= time; i--, j--) {// 从后往前比较大小,小的往前排
				if (array[i] < array[j]) {//交换
					int tmp = array[i];
					array[i] = array[j];
					array[j] = tmp;
				}
			}
		}
	}

2.选择排序

  选择排序是这样实现的:
  设数组内存放了n个待排数字,数组下标从0开始,到n-1结束。
  i=第几次
  从数组的第i个元素开始到第n-1个元素,寻找最小的元素。
  将上一步找到的最小元素和第i-1位元素交换。
  如果i=n-1算法结束,否则回到第3步

	// 选择排序
	public void selectSort(int[] array) {
		for (int time = 0; time < array.length - 1; time++) {
			int pMin = time;
			for (int i = time + 1; i < array.length; i++) {
				if (array[i] < array[pMin]) {
					pMin = i;
				}
			}
			if (pMin != time) {
				int tmp = array[time];
				array[time] = array[pMin];
				array[pMin] = tmp;
			}
		}
	}

3.插入排序

  插入排序是这样实现的:
  首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
  从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
  重复2号步骤,直至原数列为空。
	// 插入排序
	public void insertSort(int[] array) {
		for (int time = 1; time < array.length; time++) {
			int p = time;
			int tmp = array[time];
			while (p > 0 && tmp < array[p - 1]) {
				array[p] = array[p - 1];
				p--;
			}
			array[p] = tmp;
		}
	}

4.快速排序

       设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。
	// 快速排序
	public void quickSort(int[] array) {
		subQuickSort(array, 0, array.length - 1);
	}

	private void subQuickSort(int[] array, int low, int high) {
		if (low < high) {
			int pivotTag = partitions(array, low, high);
			subQuickSort(array, low, pivotTag - 1);
			subQuickSort(array, pivotTag + 1, high);
		}
	}

	private int partitions(int array[], int low, int high) {
		int pivotKey = array[low];
		while (low < high) {
			while (low < high && array[high] >= pivotKey)
				high--;
			array[low] = array[high];
			while (low < high && array[low] <= pivotKey)
				low++;
			array[high] = array[low];
		}
		array[low] = pivotKey;
		return low;
	}





内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值