网络安全中的数据分析与机器学习应用
1. 网络安全工具助力人类防御
网络安全工具的目标是帮助人类更高效、安全地完成特定任务。自动化是应对大量任务的关键,不同组织对自动化响应的类型和范围有不同的容忍度。例如,对于企业 VPN 服务器的未授权登录尝试,有的组织会选择忽略,而有的则会自动将违规 IP 地址列入黑名单,甚至对其进行扫描。
数据风险分析是数据安全分析助力人类态势感知的一个重要应用。像“我们今天承担了多少与网络相关的风险?”这类细致的问题,对于大多数公司来说是非传统的,但借助数据分析和机器学习的进步得以实现。例如,加拿大的 Interset 公司以“威胁检测科学”为口号,其商业解决方案通过收集企业数据并运用行为分析进行威胁分析。该公司在白皮书“大数据与行为分析在安全领域的应用”中阐述了其开发并实施的行为分析数学模型,该模型聚合了有关活动、用户、文件和方法的数据,终端用户可以通过可视化的方式查看分析结果。
计算网络风险是复杂且尚未被充分理解的。可以通过大量科学实验来开发适合自己的风险方程。例如,存储在数据库中的客户数据越多,攻击者试图窃取数据的风险就越高,但这一假设受到许多变量的影响,如用户培训和数据保护措施等。Interset 在其行为风险模型中考虑了四个因素(用户、活动、文件和方法),我们可以使用真实的数据集来设计自己的风险方程并进行实验测试。
人类在判断事件的概率或频率方面并不擅长。例如,在网络中的众多机器和用户中,很难判断哪个最有可能受到攻击,以及攻击会造成多大的停机时间和财务影响。以 2013 年亚马逊网站宕机为例,人们推测其每分钟损失在 66,000 美元至 120,000 美元之间。
数据科学是黑客技能(如文件操作、算法)、
                      
                          
                        
                            
                            
                          
                          
                            
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            