- 博客(7)
- 收藏
- 关注
原创 模型性能度量
这里的内容主要包括:性能度量、比较检验和偏差与方差。在上一个notebook中,我们解决了评估学习器泛化性能的方法,即用测试集的“测试误差”作为“泛化误差”的近似,当我们划分好训练/测试集后,那如何计算“测试误差”呢?这就是性能度量,例如:均方差,错误率等,即“测试误差”的一个评价标准。有了评估方法和性能度量,就可以计算出学习器的“测试误差”,但由于“测试误差”受到很多因素的影响,例如:算法随机性或测试集本身的选择,那如何对两个或多个学习器的性能度量结果做比较呢?这就是比较检验。最后偏差与方差是解释学习器泛
2022-01-07 15:58:22 1886
原创 机器学习的基本概念
1 机器学习的定义正如我们根据过去的经验来判断明天的天气,吃货们希望从购买经验中挑选一个好瓜,那能不能让计算机帮助人类来实现这个呢?机器学习正是这样的一门学科,人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。另一本经典教材的作者Mitchell给出了一个形式化的定义,假设:P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务
2022-01-07 15:57:49 503
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人