自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 数据爬取与筛选

数据爬取与筛选

2022-08-04 23:20:19 886 1

原创 细粒度图像识别

细粒度图像识别与分类

2022-04-30 22:27:07 1463

原创 基于CRNN的不定长文字识别原理与实现

基于CRNN的不定长文字识别

2022-04-15 11:38:23 1683 10

原创 图像分割之FCN全卷积神经网络

图像分割开山之作:全卷积神经网络FCN

2022-04-13 15:57:30 4333

原创 OCR字符识别技术总览

OCR字符识别技术总览

2022-04-11 14:22:56 4847

原创 模型性能度量

这里的内容主要包括:性能度量、比较检验和偏差与方差。在上一个notebook中,我们解决了评估学习器泛化性能的方法,即用测试集的“测试误差”作为“泛化误差”的近似,当我们划分好训练/测试集后,那如何计算“测试误差”呢?这就是性能度量,例如:均方差,错误率等,即“测试误差”的一个评价标准。有了评估方法和性能度量,就可以计算出学习器的“测试误差”,但由于“测试误差”受到很多因素的影响,例如:算法随机性或测试集本身的选择,那如何对两个或多个学习器的性能度量结果做比较呢?这就是比较检验。最后偏差与方差是解释学习器泛

2022-01-07 15:58:22 1886

原创 机器学习的基本概念

1 机器学习的定义正如我们根据过去的经验来判断明天的天气,吃货们希望从购买经验中挑选一个好瓜,那能不能让计算机帮助人类来实现这个呢?机器学习正是这样的一门学科,人的“经验”对应计算机中的“数据”,让计算机来学习这些经验数据,生成一个算法模型,在面对新的情况中,计算机便能作出有效的判断,这便是机器学习。另一本经典教材的作者Mitchell给出了一个形式化的定义,假设:P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务

2022-01-07 15:57:49 503

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除