介绍
本教程将在Android设备上使用TensorFlow Lite运行图像识别模型,具体包括:
- 使用TensorFlow Lite Model Maker训练自定义的图像分类器
- 利用Android Studio导入训练后的模型,并结合CameraX使用
- 利用手机GPU加速模型运行
最终的应用将呈现如下的界面:
预备工作
安装Android Studio 4.1以上版本
下载初始代码
创建工作目录,使用
git clone https://github.com/hoitab/TFLClassify.git
拷贝代码;或者直接访问github链接下载代码的ZIP包,并解压缩到工作目录。
运行初始代码
- 打开Android Studio,选择“Open an Existing Project”
- 选择TFLClassify/build.gradle生成整个项目。项目包含两个module:finish 和 start,finish模块是已经完成的项目,start则是本项目实践的模块。
- 第一次编译项目时,弹出“Gradle Sync”,将下载相应的gradle wrapper 。
- 手机通过USB接口连接开发平台,并设置手机开发者选项允许调试。
- 选择真实物理机(而不是模拟器)运行start模块
- 允许应用获取手机摄像头的权限,得到下述效果图,界面利用随机数表示虚拟的识别结果。
向应用中添加TensorFlow Lite
- 选择"start"模块
- 右键“start”模块,或者选择File,然后New>Other>TensorFlow Lite Model
- 选择已经下载的自定义的训练模型。本教程模型训练任务以后完成,这里选择finish模块中ml文件下的FlowerModel.tflite。
点击“Finish”完成模型导入,系统将自动下载模型的依赖包并将依赖项添加至模块的build.gradle文件。 - 最终TensorFlow Lite模型被成功导入,并生成摘要信息
检查代码中的TODO项
本项目初始代码中包括了若干的TODO项,以导航项目中未完成之处。为了方便起见,首先查看TODO列表视图,View>Tool Windows>TODO
默认情况下了列出项目所有的TODO项,进一步按照模块分组(Group By)
添加代码重新运行APP
- 定位“start”模块MainActivity.kt文件的TODO 1,添加初始化训练模型的代码
private class ImageAnalyzer(ctx: Context, private val listener: RecognitionListener) :
ImageAnalysis.Analyzer {
...
// TODO 1: Add class variable TensorFlow Lite Model
private val flowerModel = FlowerModel.newInstance(ctx)
...
}
- 在CameraX的analyze方法内部,需要将摄像头的输入
ImageProxy
转化为Bitmap
对象,并进一步转化为TensorImage
对象
override fun analyze(imageProxy: ImageProxy) {
...
// TODO 2: Convert Image to Bitmap then to TensorImage
val tfImage = TensorImage.fromBitmap(toBitmap(imageProxy))
...
}
- 对图像进行处理并生成结果,主要包含下述操作:
- 按照属性
score
对识别结果按照概率从高到低排序 - 列出最高k种可能的结果,k的结果由常量
MAX_RESULT_DISPLAY
定义
override fun analyze(imageProxy: ImageProxy) {
...
// TODO 3: Process the image using the trained model, sort and pick out the top results
val outputs = flowerModel.process(tfImage)
.probabilityAsCategoryList.apply {
sortByDescending { it.score } // Sort with highest confidence first
}.take(MAX_RESULT_DISPLAY) // take the top results
...
}
- 将识别的结果加入数据对象
Recognition
中,包含label
和score
两个元素。后续将用于RecyclerView
的数据显示
override fun analyze(imageProxy: ImageProxy) {
...
// TODO 4: Converting the top probability items into a list of recognitions
for (output in outputs) {
items.add(Recognition(output.label, output.score))
}
...
}
- 将原先用于虚拟显示识别结果的代码注释掉或者删除
// START - Placeholder code at the start of the codelab. Comment this block of code out.
for (i in 0..MAX_RESULT_DISPLAY-1){
items.add(Recognition("Fake label $i", Random.nextFloat()))
}
// END - Placeholder code at the start of the codelab. Comment this block of code out.
- 以物理设备重新运行start模块
- 最终运行效果