目标
利用 DEM 对 影像 进行几何纠正。
确保 DEM 和影像使用相同的 坐标系。
设定输出图像的 分辨率。
使用 Qt C++ 环境编写代码。
DEM 和 影像坐标系统的一致性
首先,确保 DEM 和影像数据在同一地理坐标系统下(如 WGS84 或 UTM)。如果它们处于不同的坐标系统,必须先进行坐标转换。通常,DEM 使用地理坐标系(经纬度)或平面坐标系(如 UTM),而影像可能已经经过了投影转换。
配准:影像与 DEM 需要一一对应,即每个影像像素点都应该对应 DEM 中的一个高程值。这通常要求影像已经通过正射校正(orthorectification),且影像的地理位置能够与 DEM 对应。
地理配准工具:你可以使用 GIS 工具(如 QGIS、GDAL)来确保影像和 DEM 具有相同的坐标系。
步骤解析
数据加载:
读取影像数据(通常是栅格数据格式,如 TIFF)。
读取 DEM 数据(通常是高程数据,灰度图像形式,像素值代表海拔高度)。
影像几何畸变的识别:
影像的几何畸变一般来自拍摄角度、传感器畸变、地形等因素。
DEM 中的每个像素包含高程值,这些高程值可以用于修正影像每个像素的高度信息,从而减少几何误差。
几何纠正算法:
我们基于 DEM 数据对影像的每个像素进行几何纠正,纠正的主要目标是将影像坐标转换到一个新的位置,通常是基于高程信息修正影像的倾斜。
影像的每个像素的地理位置(通常为经纬度或投影坐标)通过 DEM 高程数据进行调整,影响影像中每个像素的几何位置。
分辨率调整:
在几何纠正的同时,你可能需要根据需求调整影像的分辨率。例如,将影像重采样到一个指定的分辨率。通常使用双线性插值、最邻近插值等方法来调整图像的分辨率。
算法实现细节
1. 数据加载
首先,我们需要加载影像和 DEM 数据。假设影像和 DEM 是 TIFF 格式,使用 OpenCV 加载影像数据,使用 GDAL 或 OpenCV 加载 DEM 数据。
#include <opencv2/opencv.hpp>
#include <gdal_priv.h> // 使用 GDAL 库加载 DEM 数据
// 加载影像
cv::Mat loadImage