11、八皇后问题求解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/llianlianpay/article/details/79970587

在一个8*8的棋盘上放8个皇后,使得这8个皇后无法互相攻击( 任意2个皇后不能处于同一行,同一列或是对角线上),输出所有可能的摆放情况。

高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。现代教学中,把八皇后问题当成一个经典递归算法例题。

这里写图片描述

public class Empress {

    private int n ; //皇后个数
    private int[] x ; //当前解
    private long sum ; //当前已找到的可行方案数
    private static int h ;      //记录遍历方案序数

    public Empress(){
        this.sum = 0 ;  //初始化方案数为1,当回溯到最佳方案的时候,就自增1
        this.n = 8 ;    //求n皇后问题,由自己定义
        this.x = new int[n+1];  //x[i]表示皇后i放在棋盘的第i行的第x[i]列
        h = 1 ; //这个是我额外定义的变量,用于遍历方案的个数,请看backTrace()中h变量的作用,这里将它定义为static静态变量
    }

    public boolean place (int k){
       // System.out.println(Arrays.toString(x) );
        for (int j = 1 ; j < k ; j++){
            //这个主要是刷选符合皇后条件的解,因为皇后可以攻击与之同一行同一列的或同一斜线上的棋子
            if ( (Math.abs(k - j)) == (Math.abs(x[j]-x[k])) || (x[j] == x[k]) ){
           //     System.out.println("false"); //x[2] = 1
                return false ;  //如果是与之同一行同一列的或同一斜线上的棋子,返回false;
            }
        }
        return true ;//如果不是与之同一行同一列的或同一斜线上的棋子,返回true;
    }

    public void backTrace (int t){
        System.out.println(t);
        if (t > n){ //当t>n时,算法搜索到叶节点,得到一个新的n皇后互不攻击放置方案,方案数加1
            sum ++ ;    //方案数自增1
            System.out.println ("方案" + (h++) + "");
            print(x);
            System.out.print ("/n----------------/n");//华丽的分割线
        }else { //当t<=n时,当前扩展的结点Z是解空间中的内部结点,该节点有x[i]=1,2,…,n共n个子结点,
            //对于当前扩展结点Z的每一个儿子结点,由place()方法检测其可行性,
            //并以深度优先的方式递归地对可行子树搜索,或剪去不可行子数
            for (int i = 1 ; i <= n ; i++){
                x[t] = i ; //x[1] = 1
                if (place (t)){     //检查结点是否符合条件
            //        System.out.println( 1 +"==============" + t +"===========" +i) ;
                    backTrace (t+1);    //递归调用
                }
            }
        }
    }

    public void print (int[] a){    //打印数组,没啥的
        for (int i = 1 ; i < a.length ; i++){
            System.out.print ("皇后" + i + "在" + i + "行" +a[i] + "列、");
        }
    }

    public static void main (String[] args){
        Empress em = new Empress();
        em.backTrace(1);    //从1开始回溯
        System.out.println ("/n详细方案如上所示,"+"可行个数为:" + em.sum);
    }
}
//output:八皇后问题只有92种方案

|(i-j)/(xi-xj)|=1 是斜线公式,在棋盘上斜率为-1(1)的斜线上,满足条件i-j=xj-xi;在棋盘上斜率为1的斜线上,满足条件i-j=xi-xj。

时间复杂度为 n!

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页