11、八皇后问题求解

3人阅读 评论(0) 收藏 举报
分类:

在一个8*8的棋盘上放8个皇后,使得这8个皇后无法互相攻击( 任意2个皇后不能处于同一行,同一列或是对角线上),输出所有可能的摆放情况。

高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。现代教学中,把八皇后问题当成一个经典递归算法例题。

这里写图片描述

public class Empress {

    private int n ; //皇后个数
    private int[] x ; //当前解
    private long sum ; //当前已找到的可行方案数
    private static int h ;      //记录遍历方案序数

    public Empress(){
        this.sum = 0 ;  //初始化方案数为1,当回溯到最佳方案的时候,就自增1
        this.n = 8 ;    //求n皇后问题,由自己定义
        this.x = new int[n+1];  //x[i]表示皇后i放在棋盘的第i行的第x[i]列
        h = 1 ; //这个是我额外定义的变量,用于遍历方案的个数,请看backTrace()中h变量的作用,这里将它定义为static静态变量
    }

    public boolean place (int k){
       // System.out.println(Arrays.toString(x) );
        for (int j = 1 ; j < k ; j++){
            //这个主要是刷选符合皇后条件的解,因为皇后可以攻击与之同一行同一列的或同一斜线上的棋子
            if ( (Math.abs(k - j)) == (Math.abs(x[j]-x[k])) || (x[j] == x[k]) ){
           //     System.out.println("false"); //x[2] = 1
                return false ;  //如果是与之同一行同一列的或同一斜线上的棋子,返回false;
            }
        }
        return true ;//如果不是与之同一行同一列的或同一斜线上的棋子,返回true;
    }

    public void backTrace (int t){
        System.out.println(t);
        if (t > n){ //当t>n时,算法搜索到叶节点,得到一个新的n皇后互不攻击放置方案,方案数加1
            sum ++ ;    //方案数自增1
            System.out.println ("方案" + (h++) + "");
            print(x);
            System.out.print ("/n----------------/n");//华丽的分割线
        }else { //当t<=n时,当前扩展的结点Z是解空间中的内部结点,该节点有x[i]=1,2,…,n共n个子结点,
            //对于当前扩展结点Z的每一个儿子结点,由place()方法检测其可行性,
            //并以深度优先的方式递归地对可行子树搜索,或剪去不可行子数
            for (int i = 1 ; i <= n ; i++){
                x[t] = i ; //x[1] = 1
                if (place (t)){     //检查结点是否符合条件
            //        System.out.println( 1 +"==============" + t +"===========" +i) ;
                    backTrace (t+1);    //递归调用
                }
            }
        }
    }

    public void print (int[] a){    //打印数组,没啥的
        for (int i = 1 ; i < a.length ; i++){
            System.out.print ("皇后" + i + "在" + i + "行" +a[i] + "列、");
        }
    }

    public static void main (String[] args){
        Empress em = new Empress();
        em.backTrace(1);    //从1开始回溯
        System.out.println ("/n详细方案如上所示,"+"可行个数为:" + em.sum);
    }
}
//output:八皇后问题只有92种方案

|(i-j)/(xi-xj)|=1 是斜线公式,在棋盘上斜率为-1(1)的斜线上,满足条件i-j=xj-xi;在棋盘上斜率为1的斜线上,满足条件i-j=xi-xj。

时间复杂度为 n!

查看评论

捎信给加西亚

捎信给加西亚 [美]阿尔伯特·哈伯德写于1899年 在一切有关古巴的事件里,有一个人就象一颗不会陨落的巨星,一直明耀在我记忆的地平线之上。美西战争爆发后,美国必须马上跟西班牙的反抗军首领加西亚取得联系...
  • trybird
  • trybird
  • 2003-04-24 08:54:00
  • 1134

八皇后问题,C语言实现,求出第一行第一列有皇后的解

题目如图所示: #include #include #define N 8 using namespace std;static int position[N]; static int chessb...
  • sinat_18127633
  • sinat_18127633
  • 2017-03-04 17:38:33
  • 413

8皇后问题--回溯法 (循环递归)

8皇后问题
  • csharp25
  • csharp25
  • 2014-06-30 15:51:26
  • 1302

java代码八皇后问题

  • 2008年09月26日 16:13
  • 922B
  • 下载

八皇后问题求解

  • 2014年05月06日 17:04
  • 30KB
  • 下载

回溯法和栈的思想用于“八皇后问题”的求解

八皇后问题是一个经典的问题,其核心是:在n*n的棋盘上,有n个皇后,这些皇后必须位于不同行不同列上,并且不能处于同一对角线上,否则会因相互攻击而死亡。那么如何安排皇后们的位置呢? 我们可以利用回溯法,...
  • kelvinmao
  • kelvinmao
  • 2016-04-03 11:17:28
  • 2631

皇后问题求解算法 开发环境VC6.0

  • 2011年01月03日 15:57
  • 6.47MB
  • 下载

暴力枚举之八皇后问题(可行解个数,打印可行解纵坐标,棋盘有洞,n皇后)

一、可行解的个数 #include #include #include using namespace std; const int maxn = 1000; int n,tot=0,c[ma...
  • ESESZB
  • ESESZB
  • 2017-03-17 20:45:44
  • 871

人工智能实验报告2份 Prolog语言编程练习 图搜索问题求解

  • 2009年02月17日 09:25
  • 176KB
  • 下载

搜索算法-讲解[八皇后问题]

算法分析 深度优先搜索法。 首先我们来想象一只老鼠,在一座不见天日的迷宫内,老鼠在入口处进去,要从出口出来。那老鼠会怎么走?当然是这样的:老鼠如果遇到直路,就一直往前走,如果遇到分叉路口,就任意选...
  • zwb8848happy
  • zwb8848happy
  • 2011-12-28 21:49:57
  • 3844
    个人资料
    持之以恒
    等级:
    访问量: 5314
    积分: 811
    排名: 6万+
    博客专栏
    文章存档
    最新评论