算法 打家劫舍 c++ 动态规划

题目一:打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例 1:
输入:[1,2,3,1] 输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入:[2,7,9,3,1] 输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。偷窃到的最高金额 = 2 + 9 + 1 = 12 。
提示:0 <= nums.length <= 100 、0 <= nums[i] <= 400

算法思路:

首先考虑最简单的情况。如果只有一间房屋,则偷窃该房屋,可以偷窃到最高总金额。如果只有两间房屋,则由于两间房屋相邻,不能同时偷窃,只能偷窃其中的一间房屋,因此选择其中金额较高的房屋进行偷窃,可以偷窃到最高总金额。
如果房屋数量为k (k>2),有两个选项:
偷窃第 k 间房屋,那么就不能偷窃第 k-1间房屋,偷窃总金额为前 k-2间房屋的最高总金额与第 k 间房屋的金额之和。
不偷窃第 k 间房屋,偷窃总金额为前 k-1间房屋的最高总金额。
在两个选项中选择偷窃总金额较大的选项,该选项对应的偷窃总金额即为前 k间房屋能偷窃到的最高总金额。
用 dp[i] 表示前i间房屋能偷窃到的最高总金额,那么就有如下的状态转移方程:
dp[i]=max(dp[i-2]+nums[i],dp[i-1])
边界条件为:dp[0]=nums[0],dp[1]=max(nums[1],nums[2])
最终的答案即为,其中 n 是数组的长度。
由上我们可以得到一般性结论,即简易的动态规划四部曲
1)初始化状态:尝试列出每种状态的情况
2〕递推公式:由前面的状态尝试找出规律,推出递准公式
3〕状态缓存:将每一次计算出的状态缓存.从而为下一步的状态提供记录,通常是一维数组或者二维数组
4〕空间压缩:当前状态常常只需要根据前面的某些状态进行计算,因此可以不必保留每一次的状态

代码实现:

#include
#include<math.h>
#include<stdio.h>
#include<string.h>
using namespace std;
void main(){
int nums[] = {2,7,9,3,1};
const int size = sizeof(nums)/ sizeof(nums[0]);
int dp[size] = {};
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < size; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
//cout << size << endl;
cout << dp[size - 1] << endl;
}
运行结果:

题目二:按摩师

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
示例 1:
输入: [1,2,3,1] 输出:4
解释: 选择1号预约和3号预约,总时长 = 1 + 3 = 4。
示例 2:
输入: [2,7,9,3,1] 输出:12
解释: 选择 1 号预约、3号预约和5号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:
输入: [2,1,4,5,3,1,1,3] 输出:12
解释: 选择1号预约、3号预约、5号预约和8号预约,总时长 = 2 + 4 + 3 + 3 = 12。
注:解题方法与上题雷同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值