8595 钱币组合的问题(优先做)
时间限制:300MS 代码长度限制:10KB
提交次数:897 通过次数:398
题型: 编程题 语言: G++;GCC;VC;JAVA
Description
设有n种不同的钱币各若干,可用这n种钱币产生许多不同的面值。
如给定面值7分,有1分3张,2分3张,5分1张,能组成给定面值7分的方法有如下4种:
3个1分+2个2分; 5个;
1个1分+3个2分; 4个;
2个1分+1个5分; 3个;
1个2分+1个5分; 2个。
上面4种方案的最少张数为2个。
你的编程任务:给定面值m,和n种不同面值钱币及其张数,
(1) 求给定面值m能有多少种不同的构成方法数。
(2) 求给定面值m最少要多少张。
输入格式
第1行有1个正整数n(1<=n<=50),表示有n种不同的钱币。
第2行有n个数,分别表示每种钱币的面值v[1]…vn。
第3行有n个数,分别表示每种钱币的张数k[1]…kn。
第4行有1个数,表示给定的面值m (1<=m<=20000)。
输出格式
两行:
第一行:计算出给定面值的不同的方法种数。若无法给出找钱方案,返回0数值。
第二行:计算出给定面值所需的最少张数。若无法给出找钱方案,返回“no possible”(无大写,无标点)。
输入样例
3
1 2 5
3 3 1
7
输出样例
4
2
提示
(1)给定面值m的不同方法种数
给定的总面值m,n种钱币,每种钱币面值v[1…n],每种钱币的张数k[1…n],
用一个二维数组d[i][1…m]记录用前i种钱币组成1…m面值产生的方法数。1<=i<=n。
初始,该数组全清零,然后逐个加入第i种面值的钱币(1<=i<=n),并修改影响到数组d的方法数。
设d[i,j]:表示前i种钱币组成面值j分的方法数,1<=i<=n,0<=j<=m。(j>=0才有意义,若j<0,可视为d[i,j]=0)
d[i,0] = 1, if 1<=i<=n
d[1,j] = 1, if j%v[1]=0 && j/v[1]<=k[1];
d[1,j] = 0, if j%v[1]!=0 || j/v[1]>k[1] || j<0;
if i>1 && j1 && v[i]<=j<2*v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]]
if i>1 && 2v[i]<=j<3v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]] + d[i-1,j-2*v[i]]
…
if i>1 && k[i]v[i]<=j<=m
d[i,j] = d[i-1,j] + d[i-1,j-1v[i]] + d[i-1,j-2*v[i]] + … + d[i-1,j-k[i]*v[i]]
//这里要注意,要保证 j-k[i]*v[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。
最后d[n,m]为原问题所求。
当然由于这里的d数组d[i,j]只与d[i-1,…]有关,也完全可以用一维数组d[1…m]来实现。
(2)求给定面值m最少要多少张
假设c[i][j]表示:选择前i种面值的钱,凑成面值j的最少张数,这里1<=i<=n, 0<=j<=m。
c[i][j]的递归关系如下:
令:t = min{ (int)(j/v[i]), k[i] },表示第i种钱币最多加入的张数。
c[i][j] = min{ p+c[i-1][j-pv[i]] | p from 0 to t },这里p表示第i种币值选入的张数,
t表示第i种币值最多选入的张数。
//这里要注意,要保证 j-pv[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。
初始条件:
c[i][0]=0, 1<=i<=n
c[1][j]=int(j/v[1]), if j%v[1]==0 && j/v[1]<=k[1]
c[1][j]=MAXINT, if j%v[1]!=0 || j/v[1]>k[1]
//此处MAXINT为自定义的无穷大的数,表示没法放。
最后返回c[n][m],若c[n][m]为MAXINT,则无法找到找钱的方案。
#include<iostream>
int d[51][20001];
int c[51][20001];
int *v;
int *k;
using namespace std;
void D_C(int n, int m)
{
int i;
int j;
int h;
int temp = 0;
for(i = 1; i <= n; i++)
{
d[i][0] = 1;
c[i][0] = 0;
}
for(j = m; j > 0; j--)
{
if((j % v[1] == 0) && (j / v[1] <= k[1]))
{
d[1][j] = 1;
c[1][j] = j / v[1];
}else{
d[1][j] = 0;
c[1][j] = 5001;
}
//cout << "(" << 1 << "," << j << ")= "<< c[1][j] << endl;
}
for(i = 2; i <= n; i++)
{
for(h = 0; h <= m; h++)
{
d[i][h] = d[i - 1][h];
int t = k[i];
c[i][h] = c[i - 1][h];
if(t > (h / v[i]))
{
t = h / v[i];
}
int g ;
for( g = 1, j = h - v[i]; j >= 0 && g <= k[i]; g++)
{
d[i][h] += d[i - 1][j];
j -= v[i];
}
int p;
for( p = 1, j = h - v[i]; p <= t && j >= 0; p++)
{
temp = p + c[i - 1][j];
//cout << "(" << i - 1 << "," << j << ") = " << c[i - 1][j] << " p= " << p << endl;
if(c[i][h] > temp)
{
c[i][h] = temp;
}
j -= v[i];
}
//cout << "(" << i << "," << h << ")= "<< c[i][h] << " temp= " << temp << endl;
}
}
cout << d[n][m] << endl;
if(c[n][m] < 5001)
cout << c[n][m] << endl;
else
cout << "no possible" << endl;
}
int main()
{
int n,m;
cin >> n;
v = new int[n + 1];
k = new int[n + 1];
int i = 1;
for(; i <= n; i++)
{
cin >> v[i];
}
for(i = 1; i <= n; i++)
{
cin >> k[i];
}
cin >> m;
D_C(n , m);
return 0;
}