8595 钱币组合的问题(优先做)

8595 钱币组合的问题(优先做)
时间限制:300MS 代码长度限制:10KB
提交次数:897 通过次数:398

题型: 编程题 语言: G++;GCC;VC;JAVA
Description
设有n种不同的钱币各若干,可用这n种钱币产生许多不同的面值。
如给定面值7分,有1分3张,2分3张,5分1张,能组成给定面值7分的方法有如下4种:
3个1分+2个2分; 5个;
1个1分+3个2分; 4个;
2个1分+1个5分; 3个;
1个2分+1个5分; 2个。

上面4种方案的最少张数为2个。

你的编程任务:给定面值m,和n种不同面值钱币及其张数,
(1) 求给定面值m能有多少种不同的构成方法数。
(2) 求给定面值m最少要多少张。

输入格式
第1行有1个正整数n(1<=n<=50),表示有n种不同的钱币。
第2行有n个数,分别表示每种钱币的面值v[1]…vn
第3行有n个数,分别表示每种钱币的张数k[1]…kn
第4行有1个数,表示给定的面值m (1<=m<=20000)。

输出格式
两行:
第一行:计算出给定面值的不同的方法种数。若无法给出找钱方案,返回0数值。
第二行:计算出给定面值所需的最少张数。若无法给出找钱方案,返回“no possible”(无大写,无标点)。

输入样例
3
1 2 5
3 3 1
7

输出样例
4
2

提示

(1)给定面值m的不同方法种数

给定的总面值m,n种钱币,每种钱币面值v[1…n],每种钱币的张数k[1…n],
用一个二维数组d[i][1…m]记录用前i种钱币组成1…m面值产生的方法数。1<=i<=n。
初始,该数组全清零,然后逐个加入第i种面值的钱币(1<=i<=n),并修改影响到数组d的方法数。

设d[i,j]:表示前i种钱币组成面值j分的方法数,1<=i<=n,0<=j<=m。(j>=0才有意义,若j<0,可视为d[i,j]=0)
d[i,0] = 1, if 1<=i<=n
d[1,j] = 1, if j%v[1]=0 && j/v[1]<=k[1];
d[1,j] = 0, if j%v[1]!=0 || j/v[1]>k[1] || j<0;

if i>1 && j1 && v[i]<=j<2*v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]]

if i>1 && 2v[i]<=j<3v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]] + d[i-1,j-2*v[i]]

if i>1 && k[i]v[i]<=j<=m
d[i,j] = d[i-1,j] + d[i-1,j-1
v[i]] + d[i-1,j-2*v[i]] + … + d[i-1,j-k[i]*v[i]]
//这里要注意,要保证 j-k[i]*v[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。

最后d[n,m]为原问题所求。

当然由于这里的d数组d[i,j]只与d[i-1,…]有关,也完全可以用一维数组d[1…m]来实现。

(2)求给定面值m最少要多少张

假设c[i][j]表示:选择前i种面值的钱,凑成面值j的最少张数,这里1<=i<=n, 0<=j<=m。
c[i][j]的递归关系如下:

令:t = min{ (int)(j/v[i]), k[i] },表示第i种钱币最多加入的张数。
c[i][j] = min{ p+c[i-1][j-pv[i]] | p from 0 to t },这里p表示第i种币值选入的张数,
t表示第i种币值最多选入的张数。
//这里要注意,要保证 j-p
v[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。

初始条件:
c[i][0]=0, 1<=i<=n
c[1][j]=int(j/v[1]), if j%v[1]==0 && j/v[1]<=k[1]
c[1][j]=MAXINT, if j%v[1]!=0 || j/v[1]>k[1]
//此处MAXINT为自定义的无穷大的数,表示没法放。

最后返回c[n][m],若c[n][m]为MAXINT,则无法找到找钱的方案。

#include<iostream>
int d[51][20001];
int c[51][20001];
int *v;
int *k;
using namespace std;

void D_C(int n, int m)
{
    int i;
    int j;
    int h;
    int temp = 0;
    for(i = 1; i <= n; i++)
    {
        d[i][0] = 1;
        c[i][0] = 0;
    }
    for(j = m; j > 0; j--)
    {
        if((j % v[1] == 0) && (j / v[1] <= k[1]))
        {
            d[1][j] = 1;
            c[1][j] = j / v[1];
        }else{
            d[1][j] = 0;
            c[1][j] = 5001;
        }
        //cout << "(" << 1 << "," << j << ")= "<< c[1][j] << endl;
    }
    for(i = 2; i <= n; i++)
    {
        for(h = 0; h <= m; h++)
        {
            d[i][h] = d[i - 1][h];
            int t = k[i];
            c[i][h] = c[i - 1][h];
            if(t > (h / v[i]))
            {
                t = h / v[i];
            }
            int g ;
            for( g = 1, j = h - v[i]; j >= 0 && g <= k[i]; g++)
            {
                d[i][h] += d[i - 1][j];
                j -= v[i];
            }
            int p;
            for( p = 1, j = h - v[i]; p <= t && j >= 0; p++)
            {
                temp = p + c[i - 1][j];
                //cout << "(" << i - 1 << "," <<  j << ") = " << c[i - 1][j] << " p= " << p << endl;
                if(c[i][h] > temp)
                {
                    c[i][h] = temp;
                }
                j -= v[i];
            }
            //cout << "(" << i << "," << h << ")= "<< c[i][h] << " temp= " << temp << endl;
        }
    }
    cout << d[n][m] << endl;
    if(c[n][m] < 5001)
        cout << c[n][m] << endl;
    else
        cout << "no possible" << endl;
}

int main()
{
    int n,m;
    cin >> n;
    v = new int[n + 1];
    k = new int[n + 1];
    int i = 1;
    for(; i <= n; i++)
    {
        cin >> v[i];
    }
    for(i = 1; i <= n; i++)
    {
        cin >> k[i];
    }
    cin >> m;
    D_C(n , m);

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值