逻辑函数的最小项、约束项和无关项

最小项

最小项代表了输入变量的一种唯一取值情况。有且仅有一种取值情况使得对应的最小项取值为1.

这就是最小项的互斥性,即每个最小项在唯一的输入组合下为 1,而其他输入下为 0。

以最小项之和形式表示的逻辑函数,仅由表达式中出现的最小项决定逻辑函数输出(取值)为1的唯一输入组合。
需要注意的是,下述提到的逻辑函数都是没有约束项和任意项的。


最小项(minterm)和最大项(maxterm)的对比

逻辑函数中的最小项(minterm)和最大项(maxterm)的命名源于它们各自覆盖的真值表范围的大小

每个最小项仅在唯一一种输入组合下为1,对应真值表中的一行。例如, A ′ B C A'BC ABC 仅在 A = 0 , B = 1 , C = 1 A=0, B=1, C=1 A=0,B=1,C=1 时为1。每个最大项在除一种输入组合外的所有情况下为1。例如, A + B ′ + C A + B' + C A+B+C 仅在 A = 0 , B = 1 , C = 0 A=0, B=1, C=0 A=0,B=1,C=0 时为0,其余情况下均为1。

由于每个最小项覆盖的输入组合最少(仅一种),因此称为“最小项”。在布尔代数中,它们类似于不可再分的“原子”,对应逻辑空间中最精细的单元。每个最大项覆盖的输入组合最多(输出为1,覆盖所有情况除一种),因此称为“最大项”。它们代表逻辑空间中更广泛的约束条件。

特性最小项(minterm)最大项(maxterm)
逻辑操作变量的与(AND)组合变量的或(OR)组合
覆盖范围仅一种输入组合(覆盖最少)除一种外的所有输入组合(覆盖最多)
真值表对应函数为1的行函数为0的行
布尔代数角色原子(不可再分的最小单元)覆盖广泛的最大约束条件

总结

  • 最小项之和(Sum of Products, SOP):将所有使函数为1的最小项相加(OR),覆盖所有需要输出1的精确条件。
  • 最大项之积(Product of Sums, POS):将所有使函数为0的最大项相乘(AND),排除所有需要输出0的广泛条件。

名称中的“最小”和“最大”反映了它们在真值表中覆盖范围的广度:最小项覆盖最精细的情况,最大项覆盖最广泛的情况。这一命名直观体现了它们在逻辑表达中的作用和特性。

约束项

约束项的作用是限制某些输入变量的取值组合不能出现。

它是用逻辑语言表示的约束条件,其形式是取值恒等于0的最小项。

这个最小项就是不能出现的取值组合所对应的最小项。根据最小项的定义,我们可以知道在该取值组合下,最小项的取值应当为1。但是我们强制其恒等于0,这就意味着,该取值组合不能够出现,否则会出现矛盾。

由于约束项的取值恒为0,所以我们可以根据实际情况,选择是否将其写入逻辑函数式。因为根据逻辑代数的基本公式 0 + A = 1 0 + A = 1 0+A=1和代入定理可知,任意一个逻辑函数加上0等于它本身。

任意项

任意项是指在某个输入组合下逻辑函数的输出是1还是0皆可。

由最小项的互斥性可知,对于以最小项之和形式表示的逻辑函数来说,其中每个最小项对应的取值组合必定使得该最小项取值为1,而其他最小项的取值为0。
既然如此,那么对于某个任意项对应的取值组合,必定也使得其他最小项都为0。
假设逻辑函数加上该任意项,则在该取值组合下,逻辑函数的其他最小项都为0,而该任意项为1,故逻辑函数取值为1;
假设不加上该任意项,则在该取值组合下,逻辑函数的所有最小项都为0,故逻辑函数取值为0;

而由上“任意项是指在某个输入组合下逻辑函数的输出是1还是0皆可”,可以推出我们也可以根据实际情况,选择是否将其写入逻辑函数式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值