SNN
文章平均质量分 94
脉冲神经网络
llllfffffffff
野蛮生长
展开
-
(一)脉冲编码
在本教程中,我们将假设我们有一些非脉冲输入数据 (即MNIST数据集), 尝试使用几种不同的技术将这些数据编码为脉冲。原创 2024-09-13 21:09:02 · 1055 阅读 · 0 评论 -
(二)LIF神经元
Leaky Integrate-and-Fire(LIF) 神经元模型处于生物物理模型和人工神经元两者之间的中间位置。它接收加权输入的总和, 与人工神经元非常相似。但它并不直接将输入传递给激活函数, 而是在一段时间内通过泄漏对输入进行累积, 这与 RC 电路非常相似。如果累积值超过阈值, 那么 LIF 神经元就会发出电压脉冲。LIF 神经元会提取出输出脉冲的形状和轮廓;它只是将其视为一个离散事件。因此, 信息并不是存储在脉冲中, 而是存储在脉冲的时长(或频率)中。原创 2024-09-18 10:38:21 · 1030 阅读 · 0 评论 -
(三)一个前馈脉冲神经网络
了解如何简化LIF神经元,使其适合深度学习实现前馈脉冲神经网络(SNN)原创 2024-09-19 14:37:44 · 799 阅读 · 0 评论 -
(五)使用snntorch训练脉冲神经网络
网络框架# 定义网络fc1 对来自MNIST数据集的所有输入像素应用线性变换;lif1 集成了随时间变化的加权输入,如果满足阈值条件,则发放脉冲;fc2 对 lif1 的输出脉冲应用线性变换;lif2 是另一层脉冲神经元,集成了随时间变化的加权脉冲。原创 2024-09-19 21:34:13 · 1251 阅读 · 0 评论